这项研究的结果于12月20日发表在12月20日的《英国杂志NPJ量子材料》上。标题:“铁电式拓扑半学Sraubi中的超导性”作者:hidefumi takahasi,Tomohiro Sasaki,Akitoshi Nakano,Nakano,Kazuto Akiba,Masayuki Akiba,Masayuki takahashi,Takahashi https://doi.org/10.1038/s41535-023-00612-4
摘要背景:属于卡帕里达科家族的Buccholzia Coriacea(奇妙的Kola)是一种常绿灌木,在喀麦隆,中非共和国,加蓬,安哥拉,安哥拉,尼日利亚和加纳等地理位置分布在地理上。它用于用于处理各种疾病和各种目的的传统医学。进行了这项研究以确定LD50,植物化学成分,并评估Buchholzia coriacea的甲醇种子提取物对雌性Wistar Albino大鼠植入的影响。方法论:根据标准方法进行植物化学筛选,以检测Buchholzia Coriace甲醇种子提取物中存在的植物化学物质。总共使用了36名成年雌性Wistar白化大鼠进行这项研究。十二只大鼠用于急性毒性研究,而对于植入研究,将24只成熟的雌性大鼠分为四组(对照,低剂量和高剂量组)。组I被指定为对照,其他三个组被指定为测试组。将Buccholzia coriacea的250(250),500和1000 mg/kg的甲醇种子提取物施用到测试组中10天,然后去除子宫并计算植入位点。结果:植物化学筛查显示了生物碱,类黄酮,单宁,碳水化合物和皂苷的存在。急性毒性研究表明,布希亚氏菌具有LD50> 5000 mg/kg。给予哥伦比亚菌的甲醇种子提取物的甲醇种子提取物并未显着(P 0.05)改变了与对照组相比,在术组中改变了植入部位的数量。结论:结果表明,给予Buchholzia coriacea的甲醇种子提取物对植入没有显着影响。
您可能不这么认为,但您的大脑是一个奇怪而又奇妙的东西;科学家认为它是宇宙中最复杂的物体。真的。这有点问题,因为您的大脑通过将奇怪而奇妙的事物与更简单的日常事物进行比较来理解它们。但实际上没有什么能像您的大脑一样,那么我们应该将它与什么进行比较呢?一台电脑?一个视频库?一个花园?
目的:各种商业品种以及野生石榴基因型在整个伊朗都广泛。这种多样性被认为是育种计划的骨干。这项研究的目的是对八个局部石榴品种的水果特征以及一个著名的商业化,“奇妙”品种的果实特征进行比较分析。研究方法:收集水果并将其转移到实验室。测量了果实,树芳和皮肤参数,并将数据分析为完全随机的设计,并具有三个复制。发现:结果清楚地表明了品种之间的差异。在“ Gavkoshak”中发现了最高的果实重量,长度,宽度,芳族重量,芳族直径,新鲜/干燥重量,皮肤新鲜/干重。在“ Galookandeh”中记录了最高的花萼长度和皮肤厚度。发现“ Torsh Oud”,“ Faroogh”,“ Galookandeh”和“ Rubab”有硬种子。在“奇妙”中发现了最高的TSS,皮肤 /青霉素和蔗糖含量。在“ rubab”中观察到了最大葡萄糖和果糖的量。结果最终表明,“ Gavkoshak”和“ Rubab”品种在其物理水果参数方面具有更大的等级。在化学特性方面,最好的品种是“奇妙”和“ rubab”。“ rubab”,“ gavkoshak”和“奇妙”被建议作为石榴生产或未来繁殖计划的优越品种。限制:没有限制。此外,这些局部品种的曲折特征也没有较早地研究。独创性/价值:“奇妙”是一个引入的,与这种新植物材料同时同时对Fars Origon的石榴材料的比较分析将是有价值的。
120. 钥匙有各种奇妙的用途——打开密码。打开一扇门。打开一所监狱。打开一所神秘的房子。打开一座城堡。打开一座建筑。进行秘密活动。
ieeeoes.org › uploads › 2019/07 › 1985-... PDF 回声测距浮标是上述严谨学科的一个例子,确实是一个奇妙的工程。它包含一个完整的声纳系统和... 23 页
与父母,老师和朋友等人交谈,并询问他们对包容性和隐藏残疾的了解,以了解他们的意识。您也可以与您认识的任何隐藏残疾(如果他们很舒服)的人进行交谈,以了解他们的经历。有很多奇妙的慈善机构支持特定隐藏残疾的人:
抽象利用量子力学的奇妙特征,量子力学的奇妙特征,一个以多种自由(DOF)编码的超室内量子网络,例如极化和轨道角动量DOF,可以为许多戏剧性应用编码每个传输光子和O效率的更多Qubits。在这里,我们通过使用密集波长的多路复用和纠缠传输技术演示了具有完全连接的网络体系结构的超牢固的多源网络。在极化和时间能量DOF中的三个超牢固状态多路复用到三种单个模式纤维,以形成完全连接的网络体系结构。然后,使用三个干涉量子门用于将量子纠缠从时间能量转移到轨道角动量DOF。实验结果揭示了构建网络的高质量高质量,其纠缠状态的限制高于96%。我们的方法可以提供一种新颖的方式来构建一个大规模的超置网络,该网络可以支持各种量子任务,例如超密集编码和传送。