微键检验通常用于研究文件/基质键合行为。在本实验中,平均剪切应力通常用作界面强度,而无需考虑奇异应力。因此,在本文中,在纤维入口/出口点新分析了奇异应力场(ISSF)的强度。将微键测试中的纤维入口点上获得的ISSF与相同的几何形状下的单个纤维拉出进行了比较。结果表明,应注意先前的微键测试几何形状,因为ISSF取决于测试几何形状的敏感性。为了控制初始文件/矩阵剥离并正确评估粘结行为,在微键测试中提出了合适的测试几何形状。
摘要 奇异变形杆菌是一种革兰氏阴性细菌,以其独特的群集运动能力和尿素酶活性而闻名。之前对四种菌株的蛋白质组学报告假设,与其他革兰氏阴性细菌不同,奇异变形杆菌可能不会表现出基因含量的显著种内变异。然而,目前还没有对来自各种来源的大量奇异变形杆菌基因组进行全面分析以支持或反驳这一假设。我们对 2,060 个变形杆菌基因组进行了比较基因组分析。我们对从美国三家大型学术医疗中心的临床标本中回收的 893 个分离株的基因组进行了测序,结合了来自 NCBI Assembly 的 1,006 个基因组和从公共域中的 Illumina 读取中组装的 161 个基因组。我们使用平均核苷酸同一性 (ANI) 来划分物种和亚种,使用核心基因组系统发育分析来识别高度相关的 P. mirabilis 基因组簇,并使用全基因组注释来识别模型 P. mirabilis 菌株 HI4320 中不存在的感兴趣基因。在我们的队列中,Proteus 由 10 个已命名的物种和 5 个未表征的基因组物种组成。P. mirabilis 可细分为三个亚种;亚种 1 占所有基因组的 96.7% (1,822/1,883)。P. mirabilis 全基因组包括 HI4320 之外的 15,399 个基因,其中 34.3% (5,282/15,399) 没有推定的指定功能。亚种 1 由几个高度相关的克隆群组成。编码假定面向细胞外的蛋白质的噬菌体和基因簇与克隆群相关。在泛基因组中可以识别出模型菌株 P. mirabilis HI4320 中不存在但与已知毒力相关操纵子具有同源性的未知基因。
(3) [ 流动 ] • Prabhupada Dixit : 奇异和多奇异强子的产量和流动 • Shaowei Lan : 已识别粒子的各向异性流测量 • Xionghong He : 3 GeV FXT Au+Au 碰撞中的轻核产生和流动
光谱不活跃、电绝缘和化学惰性是广泛用来描述云母和绿泥石等层状硅酸盐矿物的形容词。本文通过展示来自五种块状云母和绿泥石片岩的液体剥离纳米片的水悬浮液,推翻了上述观点。通过透射电子和 X 射线光电子能谱以及电子衍射确认了纳米片的质量。通过拉曼光谱,可以观察到以前未报告过的尺寸和层相关光谱指纹。当通过紫外可见光谱分析高产悬浮液(≈ 1 mg mL − 1 )时,所有层状硅酸盐的带隙( E g )都从块体的 ≈ 7 eV 窄化到单层的 ≈ 4 eV。不同寻常的是,带隙与纳米片的面积 (A) 成反比,这是通过原子力显微镜测量的。由于未记录的量子限制效应,随着纳米片面积的增加,纳米片的电子特性向半导体行为 (带隙 ≈ 3 eV) 扩展。此外,模拟 X 射线衍射光谱表明,初始带隙变窄的根本原因是晶格弛豫。最后,由于其同构取代离子范围广泛,层状硅酸盐纳米片表现出显著的制氢催化特性。
• 量子环境下的超奇异椭圆曲线 (SSEC):随着量子计算的发展,传统的 ECC 可能会因 Shor 算法等量子算法而变得脆弱。SSEC 提供了一种潜在的解决方案,可以更好地抵御量子攻击。这些曲线利用超奇异椭圆曲线之间的同源性,创建了当前量子算法无法有效解决的复杂结构,使 SECC 成为后量子密码学的理想候选者。
摘要。作者先前利用具有关系的自由群 G 子群的陪集结构找到了一种通用量子计算模型。G 中指数为 d 的有效子群 H 导致 d 维希尔伯特空间中的“魔法”状态 | ψ ⟩,该状态编码最小信息完备量子测量 (MIC),可能带有有限的“上下文”几何。在本研究中,我们选择 G 作为奇异 4 流形 V 的基本群 π 1 (V),更准确地说是“小奇异”(时空) R 4 (即同胚和等距,但不与欧几里得 R 4 微分同胚)。我们所选的例子归功于 S. Akbulut 和 RE Gompf,它具有两个显著的特性:(a) 它显示了标准上下文几何的存在,例如法诺平面(索引 7 处)、梅尔明五角星(索引 10 处)、两量子比特交换图像 GQ (2 , 2)(索引 15 处)以及组合格拉斯曼流形 Gr(2 , 8)(索引 28 处);(b) 它允许将 MIC 测量解释为源自此类奇异的(时空) R 4 。我们将拓扑量子计算与奇异时空联系起来的新图像也旨在成为一种“量子引力”方法。
奇异价值分解对于工程和科学领域的许多问题至关重要。已经提出了几种量子算法来确定给定基质的奇异值及其相关的奇异向量。尽管这些算法是有希望的,但是在近期量子设备上,所需的量子子例程和资源太昂贵了。在这项工作中,我们提出了一种用于奇异值分解(VQSVD)的变分量子算法。通过利用奇异值的变异原理和ky fan定理,我们设计了一种新型的损失函数,以便可以训练两个量子神经网络(或参数化的量子电路)来学习奇异向量并输出相应的奇异值。更重要的是,我们对随机矩阵进行VQSVD的数值模拟以及其在手写数字的图像压缩中的应用。最后,我们讨论了算法在推荐系统和极地分解中的应用。我们的工作探讨了仅适用于Hermitian数据的量子信息处理的新途径,并揭示了矩阵分解在近期量子设备上的能力。
重味夸克与粲夸克和美夸克一样,是研究高能重离子碰撞中产生的无色介质——夸克胶子等离子体 (QGP) 的灵敏探测器。ALICE 合作组在 √ s NN = 5.02 TeV 的 Pb-Pb 碰撞中测量了奇异和非奇异 D 介子的产生。对 D 介子的椭圆 (v2) 和三角 (v3) 流的测量可以深入了解粲夸克在低横向动量 (pT) 下参与介质集体运动的情况,同时限制了介质内能量损失的路径长度依赖性。此外,利用事件形状工程 (ESE) 技术对非奇异 D 介子椭圆流研究了粲夸克与底层介质中轻夸克的耦合。最后,通过首次测量 LHC 能量下 D0 电荷相关定向流与伪快速度的关系,研究了碰撞早期产生的磁场的影响。