文献综述摘要对骨整合是牙科植入物成功的重要因素,从而确保在结构和功能水平上直接形成骨骼。几个因素影响了这一过程,包括手术技术,假体类型,生物材料和患者的全身状况。维生素D在维持骨代谢,有利于成骨细胞活性和钙的吸收(骨整合的基本因素)中起关键作用。这项研究进行了书目审查,以分析血清维生素D水平与牙科植入物的成功之间的关系。这项研究是在PubMed和Lilacs数据库中进行的,使用特定的描述符以及严格的包含和排除标准,从而选择了2020年至2025年之间发表的19个相关文章。结果表明,维生素D缺乏症与植入物失败的发生率更高,对初始稳定性和骨再生产生负面影响。研究表明,维生素D(<20 ng/ml)水平不足的患者的早期植入剂衰竭率较高。另一方面,补充维生素D被证明是有益的,促进了更有效的骨整合并减少并发症,尤其是在糖尿病和骨质疏松症等合并症的患者中。尽管补充维生素D的好处是广泛认可的,但文献仍然缺乏有关理想剂量和补充时间的标准化方案。关键词:维生素D,骨整合,牙科植入物。鉴于此,应将对血清维生素D水平的术前筛查纳入临床实践,以优化牙齿结果并最大程度地减少衰竭。未来的研究需要定义有关维生素D在植入学中作用的更强大的临床指南。
生成的AI有可能在与恶意演员的战斗中对安全专业人员至关重要。生成的AI提供了自动化的上下文感知建议,用于事件分析,并有助于从代码生成到违规预测的一切。LLM和变压器档案的潜在作用增强了模型理解和生成相关交互的能力,赋予安全专家能够导航并有效地应对网络安全的动态挑战。这就是为什么Sentinelone(具有奇异平台(该行业)的首个AI驱动网络安全平台的奇异性平台 - 继续以紫色AI(创新的生成AI安全助理)统一,简化和加速SECOPS的AI指控。
在许多流行中,以及科学的话语中,人们建议通过所谓的人工通用情报(AGI)和人工超级智能(ASI)的“大规模”使用人工智能,包括机器学习,并达到“奇异性”的点,将完全排除在决策中,将人类完全排除在统治地位的人类统治地上。在制造系统方面说,这意味着将实现智能和全部自动化(一旦将人类排除在外)。本文提出的假设是,AI/ML自治能力的限制,更具体地说,ML算法将无法完全自治,因此,人类的作用将是必不可少的。在问题的背景下,本文的作者介绍了制造业奇异性和智能机器架构的概念,认为智能机器将始终是人类依赖的,并且关于制造业,人类将保留在网络物理系统(CPS)和I4.0中的中心。支持此论点的方法是归纳的,与文献中许多文本中应用的方法相似,并基于基于归纳推理的机器学习的计算要求。该论点得到了一些实验,这些实验证明了人类在机器学习过程中的作用。纸张分为两部分。在第一部分中介绍了对文学的论证的回顾,无论是赞成和反对未来人类角色的论点。基于裸露的考虑因素,即智能CPS的通用体系结构,在多个学习循环中具有嵌入式ML功能模块,以评估在CPP/CPS的背景下使用ML功能的方式。由于应用了(非正式的)归纳方法,因此与文献中发现的其他论文类似,考虑到该方法并不能提供对定义的假设的绝对证据,因此该论文代表了一种立场论文。在这一部分中引入了制造奇点的概念,以及智能机器______________
我们在文献中可用的非宗派和相对论量子力学中的一系列电势组装分析解决方案。所谓的Nikiforov – Uvarov方法[24]的大多数潜能的数据均可以统一的方式研究,独立验证,并在Mathematica计算机代数系统的帮助下完成。仅讨论了约束状态。相反,与传统方法相反,对于每个问题,必须识别和考虑相应的正方形集成波函数的奇异性,并找到其余的终止功率序列扩展或使用代数方法(例如,请参阅[3],[5],[5],[6],[6],[8],[10],[10],[15],[15],[16],[16],[3],[3],[3] 32,[3] 32,[3] 32,[3] 32,[3],[32]因此,每个此类问题必须分别处理,这不适合统一的计算机代数方法。
摘要量子计算机和模拟器的开发开发了新的途径,用于通过量子模拟研究非平衡量子多体动力学。在对量子模拟的方法,算法和局限性的简要介绍之后,我将讨论量子模拟如何加深我们对量子多体混乱,热化及其分解的理解,重点是由于量子多体疤痕状态而导致的奇异性破裂。然后,我将通过开放系统的量子模拟来讨论最近提出的非平衡量子阶段(刺激自发对称性破裂)。最后,在弱牙术断裂和量子模拟器中的潜在应用中,我将重点介绍我们最近提出的方法来应对量子计量学中的噪声。
2反馈线性化,奇异性和滑动模式17 2.1谎言衍生物。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>171.1.1统一。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>17 2.1.2相对程度。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。18 2.2反馈线性化控制的原理。。。。。。。。。。。。。。。。。。。。。。19 2.2.1原理。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。19 2.2.2不同的延迟矩阵。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。21 2.2.3奇异性。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。21 2.3 Dubins汽车。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。23 2.4控制三轮车。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。25 2.4.1速度和标题控制。。。。。。。。。。。。。。。。。。。。。。。。。。。。。25 2.4.2位置控制。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。26 2.4.3选择另一个输出。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。27 2.5帆船。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。27 2.5.1极曲线。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。28 28 2.5.2不同的延迟。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。29 2.5.3反馈线性化方法。。。。。。。。。。。。。。。。。。。。。。。30 2.5.4极曲线控制。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。32 2.6滑动模式。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。33 2.7运动模型和动态模型。。。。。。。。。。。。。。。。。。。。。。。。。。。35 2.7.1原理。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。35 2.7.2倒杆摆的示例。。。。。。。。。。。。。。。。。。。。。。36 2.7.2.1动态模型。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。37 2.7.2.2运动模型。。。。。。。。。。。。。。。。。。。。。。。。。。。。。37 2.7.3伺服电机。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。39
谈话的目的是通过一些历史细节来解释Lemaître原子假说(1931)的概念的来源。,我们将以他的最初奇异性(以及避免它的方法)以及宇宙常数以及宇宙射线对待他的阶段(1933-1940)(1933-1940)面对这一假设。我们将展示所有这些直觉和研究如何得到量子机械直觉和解释的支持。实际上,在三十年代,莱玛特(Lemaître)发表了与量子理论有关的几篇论文:关于海森伯格的不确定性原理和纺纱子(我们称之为Majoraana Spinors),在Eddington-Diracequartion的背景下(希望能捕捉一个统一的基本理论)。Lemaître可能是建议搜索量子现象与重力之间的联系,旨在了解宇宙的深层结构和历史之间的联系之一。
altermagnetism是与抗铁磁体和铁磁体的新阶段,该阶段的新阶段与抗铁磁铁和铁磁体相似性,由于其方向依赖性磁性,引入了一种新的指导原理,用于Spintronic/Spintronic/Thermoelectric应用。实现对设备设计的利用Altermagnetism的承诺取决于识别具有可调传输特性的材料。迄今为止,对固有的altermagnets的搜索集中在各向异性在晶体学对称和带结构中的作用。在这里,我们提出了一种不同的机制,该机制通过利用范·霍夫(Van Hove)奇异性的存在来实现哈伯德局部排斥与巡回磁性之间的相互作用来实现这一目标。我们表明,Altermagnetism在广泛的相互作用和掺杂范围内是稳定的,并且我们专注于自旋荷利转化率的可调性。