计算机性能和编程技术的稳步发展引发了人们对计算机能力超越人脑的担忧,这一现象被称为“奇点”。将人脑的大小与计算机容量的进步进行比较,人们估计奇点将在几十年内出现,尽管传统计算机的容量可能在不久的将来达到极限。然而,在过去几年中,人工智能取得了迅速发展。已经有一些程序可以进行模式识别和自我学习,至少在国际象棋和其他游戏等有限领域,这些程序比最优秀的人类玩家更胜一筹。此外,预计将大大提高计算机容量的量子计算革命已经迫在眉睫。现在看来,奇点将在可预见的未来到来是不可避免的。地球、外星行星及其卫星上的生物生命可能会像以前一样继续存在,但人类可能会被计算机“取代”。更古老、更先进的智慧生命形式可能在宇宙的其他地方进化,它们可能很久以前就超越了奇点。奇点后生命可能不是基于生化反应,而是基于电子。它们的通信可能使用量子纠缠等效应,而我们无法察觉。这或许可以解释费米悖论,或者至少可以解释 SETI 中的“大沉默”问题。
光学涡旋描述的是电磁场中强度消失的奇点。光学涡旋是由电场的相消干涉引起的,在奇点附近,电场的相位从零上升到 2π 的整数倍。人们早在 1931 年就对电磁场中的这种奇点进行了讨论 [1]。然而,随着 Nye 和 Berry 发表了关于波列中位错的开创性论文 [2],以及证明光学涡旋光束实际上携带轨道角动量 [3],这一主题获得了新的发展动力。随着计算机生成的螺旋相位板 [4] 及其动态可编程对应物液晶空间光调制器 [5] 的推出,光学涡旋引起了更多的关注。演示内容包括捕获和旋转粒子[6]、制造微机械泵[7]、存储量子信息[8]、增强显微镜检查[9]等。
奇点分辨率、暗物质和暗能量:人们一直期望量子力学能够解决经典时空奇点问题。在最近的一篇论文(Das, Phys. Rev. D89 (2014) 084068)中,人们发现这可以通过一种简单的方式实现:在 Raychaudhuri 方程中用量子(Bohmian)轨迹取代经典测地线(该方程通过霍金-彭罗斯奇点定理预测所有经典测地线都是不完整的,时空是奇异的),并表明这些量子轨迹实际上是完整的。换句话说,自然界中基本粒子的量子轨迹将永远延续下去,永远不会遇到任何奇点。此外,这还产生了一种新的量子势,它转化为弗里德曼方程中的宇宙常数项,而弗里德曼方程控制着我们宇宙的演化。由于对量子波函数有一些合理的假设,即它在大尺度上是均匀和各向同性的,与宇宙学原理一致),并且它代表具有小质量的引力子或轴子的凝聚体,与所有理论和观察一致,然后正确地再现了自然界中观察到的小宇宙常数(暗能量)(Ali,Das,Phys. Lett. B741(2015)276)。我们还计算了这种凝聚体的临界温度
摘要:我们制定并朝着证明弱宇宙审查猜想的量子版本迈出了两大步。我们首先证明“密码审查”:一个定理,表明当全息 CFT 的时间演化算子在某些代码子空间上近似为伪随机(或 Haar 随机)时,则在相应的体对偶中一定存在事件视界。这个结果提供了一个一般条件,保证(在有限时间内)事件视界的形成,同时对全局时空结构做最少的假设。我们的定理依赖于最近量子学习不可行定理的扩展,并使用伪随机测量集中的新技术来证明。为了将此结果应用于宇宙审查,我们将奇点分为经典、半普朗克和普朗克类型。我们说明经典和半普朗克奇点与近似伪随机 CFT 时间演化兼容;因此,如果此类奇点确实近似伪随机,那么根据密码审查,它们在不存在事件视界的情况下不可能存在。该结果提供了一个充分条件,保证了关于量子混沌和热化的开创性全息结果(其普遍适用性依赖于视界的典型性)不会因 AdS/CFT 中裸奇点的形成而失效。
• IC2024_10_01 代数几何和/或交换代数博士后研究员 BCAM-巴斯克应用数学中心的奇点理论和代数几何组 (STAG) 和约翰内斯古腾堡美因茨大学的代数、几何、拓扑和数论组 (AGTZ) 正在寻找一名 2 年的博士后,由 STAG 的 Javier de Bobadilla、Ilya Smirnov 和 AGTZ 的 Manuel Blickle、Duco van Straten 指导。该职位由 AEI-DFG 联合资助 (BL 1072/3-1“经典奇点理论与正特征方法相遇”) ,申请人应积极参与上述 DFG/AEI 提案中概述的一个或多个项目。研究员预计将在 JGU Mainz 工作一年,在毕尔巴鄂工作一年。该职位无需出差,并提供一些差旅资金。潜在研究员应具有交换代数或代数几何背景,并根据 PI 所追求的方向进行解释。我们的主要选择标准是研究卓越性,但我们会考虑申请人的背景或兴趣是否与我们研究小组所追求的方向重叠。工资:根据经验,研究员的年薪总额在 JGU 为 55.556,88 欧元,在 BCAM 为 29.994 欧元 - 36.420 欧元。合同:JGU 1 年 + BCAM 1 年 成立时间:灵活,截止至 2025 年 10 月 1 日 截止日期:2025 年 1 月 13 日,14:00 CEST 有关该职位的更多信息,请访问:https://joboffers.bcamath.org/apply/ic2024-10-01- postdoctoral-fellow-in-algebraic-geometry-and-or-commutative-algebra
摘要 本文旨在阐明脑机接口对我们理解主观性影响的具体方面。脑机接口是人类机器人化的一个阶段。脑机接口领域的一些项目旨在实现自愿心灵感应——无需符号中介的交流。自愿心灵感应是指在奇点内传递信息的潜在方式之一。因此,自愿心灵感应是奇点的一个重要方面。奇点或人机共生与母子合一有相似之处。因此,心理动力学视角可能被认为有助于思考人机共生。发展心理动力学心理学的知识与斯拉沃热·齐泽克和让·鲍德里亚的见解相结合,为观察人机共生提供了另一种视角。本文声称,如果自愿心灵感应成为另一种交流方式,它将有可能消灭主观性,使其变得精神分裂。同时,我们通过成瘾的棱镜来审视逃离内心世界的可能性。
奇异性的功能如下。奇异性的输入是物质真空尘(MVD),这是功能性奇点的原材料。奇异性(如泵)捕获了一定数量的材料真空灰尘(颗粒)并形成,并以材料数字对象的形式塑造一个自然的物质单位(NUM)。立即形成(创建)后,材料数字从奇异性接收到初始脉冲,并被奇异性辐射到外部环境中,进入周围的真空。从奇异性中获得了初始冲动后,材料数字开始通过惯性直线和均匀地远离径向的奇异性移动。这种运动的初始速度等于自然界中运动的最大运动速度(在宇宙中)。在宇宙的现代时代,这种速度等于真空中的光速。为了使奇点能够平稳起作用,而在不停止的情况下,必须始终在奇点附近足够数量。这可以通过自然定律来确保材料真空灰尘,颗粒(MVD)在奇异性方向(lnppmmvdds)的优先级和流动。
摘要 如果定义我们宇宙物理的参数偏离其当前值,那么观察到的丰富结构和复杂性将得不到支持。本文探讨了类似的参数微调是否适用于技术。人择原理是解释参数观测值的一种方式。该原理限制了物理理论以允许我们存在,但该原理不适用于技术的存在。宇宙自然选择已被提出作为人择推理的替代方法。在这个框架内,微调源于选择能够大量繁殖的宇宙。最初有人提出繁殖是通过超新星产生的奇点进行的,随后有人认为生命可能促进成为后代宇宙的奇点的产生。在这里,我认为技术对于生物产生奇点是必要的,并询问我们宇宙的物理学是否已被选择同时使恒星、智慧生命和能够创造后代的技术成为可能。特定技术似乎具备令人难以置信的能力来执行产生奇点所需的任务,这可能表明通过宇宙自然选择进行微调。这些技术包括硅电子、超导体和由液氦热力学性质实现的低温基础设施。数值研究旨在确定物理参数空间中恒星、生命和技术约束同时得到满足的区域。如果这个重叠参数范围很小,我们应该惊讶于物理学允许技术与我们并存。这些测试不需要新的天体物理或宇宙学观测。只需要对易于理解的凝聚态系统进行计算机模拟。
1. 狭义人工智能,又称弱人工智能或人工智能(ANI),是指用于解决特定问题的人工智能。我们今天拥有的几乎所有人工智能应用都是狭义人工智能。例如,图像分类、对象检测、语音识别(如亚马逊的 Alexa、iPhone 的 Siri、微软的 Cortana 和 Google Assistant)、翻译、自然语言处理、天气预报、定向广告、销售预测、电子邮件垃圾邮件检测、欺诈检测、人脸识别和计算机视觉都是狭义人工智能。 2. 通用人工智能,又称强人工智能或人工智能(AGI),是指用于解决一般问题的人工智能。它更像人类,能够学习、思考、发明和解决更复杂的问题。奇点,也称为技术奇点,是人工智能超越人类智能的时候。根据谷歌的美国作家、发明家和未来学家雷·库兹韦尔(Ray Kurzweil)的说法,人工智能将在2029年通过图灵测试,并在2045年达到奇点。狭义人工智能是我们迄今为止所实现的,而广义人工智能是我们在未来所期待的。3.超级人工智能,也叫超级智能,是指奇点之后的人工智能。没有人知道超级人工智能会发生什么。一种愿景是通过大脑芯片接口实现人机融合。2020年8月,美国最著名的创新型企业家埃隆·马斯克已经展示了一头脑中装有芯片的猪。虽然有些人对人工智能的未来比较悲观,但也有些人比较乐观。我们无法预测未来,但我们可以为此做好准备。