我们通过所有感官感知世界。原因有很多,对吧?部分原因是视觉界面性价比最高。视觉界面很容易实现,人们已经习惯了视觉,视觉界面也是多年来不断发展的。另外部分原因是惯性,人们会固守过去行之有效的方法,这是一种基本的人性。如果目前所做的事情已经行之有效,人们就会拒绝尝试新事物。这让我想到了我的最后一个立场,即立场 5,它认为“行之有效”已经不再适用。我们的可视化需要采用新的生物启发方法来传达信息,基于大脑如何使用多感官输入和输出,我们已经讨论过的事情,这也是经常被讨论的事情,很多人都会这么说,而且有很多已知的好处。我们已经讨论过一些,还有很多其他的,但现实是,在已经完成的工作和这些可视化技术如何发展方面几乎没有任何实际进展。当我写这篇文章时,这让我想起了我的祖母。当我含糊其辞或不做某事时,祖母会告诉我,“尼基!做你自己的事,否则就滚蛋吧!”我想她不会喜欢我代表她的声音。不管怎样,这是一个很好的观点。我正在听,奶奶。这就是我试图发表这种演讲并传播信息的原因。可视化领域有一些非常有前途的工具,它们正在做我所说的事情,特别是增强现实和虚拟现实。这里有很多变体。你可以用很多不同的方式来做到这一点。该技术可以使用显示器、头戴式显示器、洞穴,还可以使用 AR 眼镜,但该技术在可视化方面的总体优势在于它们基于 3D 模拟,具有高度沉浸感,允许 3D(三维用户移动和交互),并且支持建模和模拟任何类型的多维数据。这真的是一件大事,我对这项技术特别兴奋,因为它终于从纯视觉界面转向使用多模态信息,这很重要,因为从历史上看,虚拟现实是视觉现实和视觉模拟的同义词。如果你身处 VR 世界,你得到的就是视觉的东西,但现在这种情况正在改变,例如,我们的 VR 系统开始使用空间化音频,因此你可以在 3D 空间中听到来自周围的声音,它们使用触摸和触觉,它们使用温度或虚拟温度变化。他们甚至在模拟中使用味觉和嗅觉,所以这很重要,很有益处。这意味着,通过使用这些提示,你不仅可以增加 VR 的包容性,让那些看不见或无法使用它的人也能使用它,而且你还可以大大提高真实感和对每个人的影响,因为我们现在终于可以模拟大脑如何在这些多模式界面中接收和处理信息。最重要的是,VR 和 AR 都已在许多不同领域用于一些非常出色的可视化,我认为,人们越来越关注超越视觉界面,这对未来的可视化来说非常有希望。我认为这是特别重要的事情。好的,我将通过快速讨论我实验室中基于多模式、生物启发可视化的一项研究来结束,我想谈论很多项目,但我有时间只谈一个,我做这个是因为我认为它特别重要。因此,目前,仅在美国就有超过 1200 万人患有某种形式的未矫正视力丧失,而全世界这一数字则激增至 2.8 亿人,因此我们谈论的不是一个很小的群体,而是——其中大多数人在获取视觉图形方面存在很大困难,因为目前没有简单的方法可以非视觉地制作或传达图形内容。所以我们的目标是说,“好吧,我们如何才能开发新的多模式可视化”技术,基于“我们正在讨论的很多东西,可以用于所有类型的 STEM 领域?”因此,我们的解决方案使用智能设备的触摸屏,因此手机和平板电脑可以而全球有 2.8 亿人,所以我们说的不是一个很小的群体,而是——大多数人很难理解视觉图形,因为目前没有简单的方法可以非视觉地制作或传达图形内容。所以我们的目标是说,“好吧,我们如何才能开发新的多模式可视化”技术,基于“我们正在讨论的很多东西,可以用于所有类型的 STEM 领域?”所以我们的解决方案使用智能设备的触摸屏,因此手机和平板电脑而全球有 2.8 亿人,所以我们说的不是一个很小的群体,而是——大多数人很难理解视觉图形,因为目前没有简单的方法可以非视觉地制作或传达图形内容。所以我们的目标是说,“好吧,我们如何才能开发新的多模式可视化”技术,基于“我们正在讨论的很多东西,可以用于所有类型的 STEM 领域?”所以我们的解决方案使用智能设备的触摸屏,因此手机和平板电脑
作为安大略省公共卫生团队,撰写本评论的初稿,我们承认我们作为定居者的立场。我们目前在许多国家的传统领土上工作和居住,包括信贷的密西沙加,阿尼什纳贝格,奇珀瓦,chippewa,haudenosaunee和温达达人,特卡隆的第一个和合法居民:to(多伦多)。我们承认自己的责任,并作为一个群体,将我们的工作原则扎根于和解与去殖民化。实际上,我们一直在与各种土著伙伴建立关系,在讨论和决策中领先,投资于我们的团队成员在文化护理连续体上的教育,并将透明度嵌入我们的所有过程和方法中。我们还认识到,土著社区“过度劳动和资源不足”,1强调以互惠互利,响应迅速并最大程度地减少负担伙伴的方式共同努力的重要性。
状态:完整和启动状态详细信息:13芝加哥社区合作伙伴和政府机构从联邦通信委员会(FCC)获得了超过60万美元的负担得起的连接计划赠款资金,以在其社区中进行ACP宣传和入学率。该城市还通过美国连接军的领导者授予了数字导航员,后者正在图书馆分支机构和整个城市的其他地点进行ACP外展和入学。该计划是与伊利诺伊州宽带实验室和宽带办公室的合作伙伴关系。这座城市正在通过社交媒体,传单和通过各个城市部门的社交媒体,传单和交叉促销的全市运动来扩大这一当地支持。数字股权联盟成员还主张通过向民选官员推广来扩展ACP资金。
• WAIT 目标人群:具有较高风险的六至十二年级学生。 • Botvin 生活技能。目标人群:蒂珀卡努谷、惠特科、瓦瓦西和北迈阿密学区的四至八年级学生。 • 强化家庭,犹他州版本。目标人群:华沙学校法人 5-14 岁学生的父母和监护人。 • 强化家庭,爱荷华州版本。目标人群:瓦瓦西、蒂珀卡努谷和北迈阿密学校法人 10-14 岁学生的父母和监护人。 • 积极文化框架社会规范运动。目标人群,间接:科修斯科县和迈阿密县六至十二年级学生。 • 谈话。他们听到你媒体运动。目标人群,间接:所有有 SCAN 孩子的家庭;卡斯、富尔顿、霍华德、迈阿密和瓦巴什县(社区准备就绪)
值得注意的是,超导导线、电极和约瑟夫森结的复杂组件可以通过少量集体相位自由度简洁地描述,这些自由度的行为类似于势能中的量子粒子。几乎所有这些电路都在量子相位波动较小的区域运行——相关通量小于超导通量量子——尽管进入大波动区域将对计量和量子比特保护产生深远影响。困难来自于电路阻抗明显需要远远超过电阻量子。独立地,需要库珀对形成对才能隧穿的奇异电路元件已被开发出来以编码和拓扑保护量子信息。在这项工作中,我们证明配对库珀对会放大电路基态的相位波动。我们测量了仅对第一个跃迁能量的通量灵敏度的十倍抑制,这意味着真空相位波动增加了两倍,并表明基态在几个约瑟夫森阱上是非局域的。
• 因不可避免的工作、娱乐、教育或其他必要活动而花费大量时间(每天四小时)在户外;或 • 居住在临时或被洪水损坏的住所(例如,营地、帐篷、暴露在外部环境中的住所),这使他们面临更大的蚊子叮咬风险;或 • 在洪水过后从事长时间的户外积水恢复工作(清理)。
2024 年:波尔多大学;苏黎世大学;卢森堡大学;奥斯陆大学;第 9 届科学、技术与创新研究数据与算法暑期学校(CfP 确认参与者);AOM;DRUID;BSE 夏季创业论坛;ESMT 计算化学和研发轨迹研讨会 2023 年:波士顿大学;HBS 青少年创新经济学会议;布里斯托尔创新经济学研讨会;圣心天主教大学 2022 年:REER;剑桥大学;AOM;CEPR/JIE 应用工业组织会议+学校;IIOC;NBER 生产力研讨会;波士顿大学;知识产权与创新虚拟研讨会;ICEA 税收与创新会议 2021 年:EPFL 虚拟创新研讨会;杜塞尔多夫竞争经济研究所;慕尼黑工业大学;CRC 静修和暑期学校;慕尼黑暑期学院(海报);欧洲工业组织研究协会 (EARIE) 会议;波士顿大学;经济史协会会议;德国经济学会;慕尼黑大学 2020:马里兰大学;SKEMA;欧洲经济协会;管理学院;德国经济学会;曼海姆大学;慕尼黑大学 2019:TPRI;波士顿大学;犹他大学;慕尼黑大学;管理学院;ZEW Innopat;青年经济学家春季会议;创新、技术变革和国际贸易研讨会海尔布隆,慕尼黑青年经济学家会议之前:慕尼黑大学 (3x);EPIP;创新地理会议;EBE 夏季会议;RISE 青少年研究员研讨会
Jonathan E. Halpert 是香港科技大学 (HKUST) 理学院 (SSCI) 化学系 (CHEM) 的助理教授。他于 2008 年在麻省理工学院 (MIT) 获得物理化学博士学位,后来担任中国科学院过程工程研究所 (CAS-IPE) 的访问学者和剑桥大学光电子组 (OE) 的博士后研究员。2013 年至 2017 年,他在惠灵顿维多利亚大学 (VUW) 化学和物理科学学院 (SCPS) 担任讲师和高级讲师,并在那里担任卢瑟福发现研究员和麦克迪亚米德先进材料和纳米技术研究所的首席研究员。 Halpert 团队于 2017 年迁至香港科技大学,其研究兴趣包括使用半导体材料(尤其是钙钛矿)的纳米晶体、纳米材料和量子点来生产功能性电子和光电子装置,包括忆阻器、储能装置、光电探测器、太阳能电池和 LED。Halpert 教授是 50 多篇同行评审论文的作者,拥有超过 7500 次职业引用 (GS) 和 11 项美国专利和申请。他的作品发表在《美国化学会志》、《ACS Nano》、《Nano Letters》、《自然光子学》、《自然通讯》、《能源与环境科学》、《材料化学》、《物理化学快报》、《ACS 光子学》和《ACS 应用材料与界面》等知名期刊上。Halpert 团队目前专注于无铅金属-金属卤化物材料和器件。