Yujie Ding,美国利哈伊大学,主席 Weili Zhang,美国俄克拉荷马州立大学,替补主席 Jerry Chen,美国麻省理工学院林肯实验室 Nils Fernelius,美国空军研究实验室 Manfred Helm,德国德累斯顿-罗森多夫研究中心 Iwao Hosako,日本国立信息通信技术研究所 Hiromasa Ito,日本理化学研究所 Peter Jepsen,日本理工大学丹麦,丹麦 Thomas Kleine-Ostmann,德国联邦物理技术研究院 Ajay Nahata,Univ.美国犹他州 Tsuneyuki Ozaki,国家科学研究所加拿大科学研究中心 Ci-Ling Pan,Natl.清华大学,中国 石伟,NP Photonics,Inc.,美国 David Zimdars,Picometrix,LLC,美国
广告索引 Advertisement Index P141 天津大学建筑设计规划研究总院有限公司 封底 北京《风景园林》杂志社有限公司 P142 上海水石景观环境设计有限公司 封二、P1 深圳市北林苑景观及建筑规划设计院有限公司 P143 深圳奥雅设计股份有限公司 封三 北京北林地景园林规划设计院有限责任公司 P144 深圳市蕾奥规划设计咨询股份有限公司
光帆动力学和多普勒阻尼 指导老师:Boris Kuhlmey 联合指导老师:Martijn de Sterke 电子邮件联系方式:boris.kuhlmey@sydney.edu.au 大挑战:基本定律和宇宙;“突破摄星”大挑战基金 半人马座阿尔法星系统是距离太阳最近的恒星系统。由于它距离我们超过 4 光年,使用现有技术需要花费数千年才能到达那里。“突破摄星”是一个令人兴奋且雄心勃勃的项目,旨在缩短这个漫长的时间框架。计划使用 100 GW 地球激光将表面积为 10 平方米、质量为 1 克(包括有效载荷)的帆加速到光速的 20%。以这个速度,大约需要 25 年才能到达半人马座阿尔法星系统并将信号发回地球。要使这一目标成为现实,必须克服许多实际和概念上的挑战。其中之一就是帆的稳定性。激光束从来都不是完美的,因此激光加速帆不可避免地会导致侧向运动和扭矩,从而导致帆偏离。必须通过自我校正的帆设计来克服这一问题,从而实现向目标的稳定运动。我们最近对二维运动进行了理论分析,并建立了原理证明,现在正在将其完全三维化。我们有许多理论和数值项目,需要理论力学、狭义相对论、光学和电磁学的方法,旨在确定帆表面的详细光学特性、其运动以及帆结构的概念设计。
大挑战项目 光帆动力学和多普勒阻尼 指导老师:Boris Kuhlmey 联合指导老师:Martijn de Sterke 电子邮件联系方式:boris.kuhlmey@sydney.edu.au 半人马座阿尔法星系统是距离太阳最近的恒星系统。由于它距离我们超过 4 光年,使用现有技术需要花费数千年才能到达那里。突破摄星计划是一个令人兴奋且雄心勃勃的项目,旨在缩短这个漫长的时间框架。该计划是使用 100 GW 地球激光将表面积为 10 平方米、质量为 1 克(包括有效载荷)的帆加速到光速的 20%。以这个速度,大约需要 25 年才能到达半人马座阿尔法星系统并将信号发回地球。要使这个目标成为现实,必须克服许多实际和概念上的挑战。其中一个挑战就是帆的稳定性。激光束从来都不是完美的,因此激光加速帆不可避免地会导致侧向运动和扭矩,从而导致帆偏离。必须通过自我校正的帆设计来克服这一问题,从而实现向目标的稳定运动。我们最近对二维运动进行了理论分析,并建立了原理证明,现在正在将其完全三维化。我们有许多理论和数值项目可用,这些项目需要理论力学、狭义相对论、光学和电磁学的方法,旨在确定帆表面的详细光学特性、其运动以及帆结构的概念设计。这些项目由物理基金会的特别大挑战基金资助。
摘要。压力脊影响海冰覆盖的质量、能量和动量预算,并对穿越冰封水域的运输造成障碍。量化脊特征对于了解海冰总质量和改善高分辨率模型中海冰动力学的表示非常重要。在北极年度冰桥行动 (OIB) 航空调查期间收集的多传感器测量数据为评估冬末的海冰提供了新的机会。我们提出了一种从高分辨率 OIB 数字测绘系统 (DMS) 可见光图像中得出脊帆高度的新方法。我们通过绘制北极西部和中部 12 个压力脊沿线的完整帆高分布来评估该方法的有效性。通过与同时发生的机载地形测绘仪 (ATM) 高程异常进行比较,可以证明该方法并评估 DMS 得出的帆高。帆高和高程异常的相关系数为 0.81 或以上。平均而言,帆高平均值和最大值与 ATM 海拔高度的吻合度分别在 0.11 米和 0.49 米以内。在绘制的山脊中,帆高平均值范围为 0.99 至 2.16 米,而最大帆高范围为 2.1 至 4.8 米。DMS 沿山脊的采样率也高于同步的 ATM 数据。
将航天器发送到我们自己的太阳系中的行星和其他物体的任务几乎已经成为常规。突破性的星际计划旨在将我们的视野扩展到我们自己的太阳系以外的地平线,远离我们最接近的邻居Alpha Centauri System,距离地球有4.2光年[1]。这个巨大的距离意味着即使是迄今为止最快的人造飞机,Parker太阳能探针(预测的最接近太阳方法的最接近光速的最高速度为0.064%),将需要6500年才能到达Al-Pha Centauri。通过化学燃料加速加速的航天器需要在Or-der中携带大量的燃料,以达到接近光速的任何明显部分的速度。一个天然能源来源的自然候选者是光,这是几十年前提出的[3,4]。这是突破性星际计划采取的方法的基本原理。的目的是通过将基于地球的激光阶段阵列加速到光速的20%,将其带有有效载荷的超轻帆艇送到Alpha Centauri [5]。这将使帆可以到达Proxima Centauri并在大约26年内将信号发送回地球;一切都在人类的一生中。帆有望具有约一克的质量,有效载荷包含探测器和电子设备,将信号发送回具有相似质量的地球[6]。在这个宏伟愿景的各个方面都有许多科学和加强挑战,包括激光阵列设计[7],材料选择[6,8],帆在加速下[9],热管理[6,10,11]和通信[12]。差异表明,将帆加速至最终速度的“合理”方案如下[5]:帆的总面积约为10 m 2,净收入激光强度约为10 gw m-2。帆被加速至光速的20%,距离
密歇根州是世界上少数几个拥有商业规模钾盐矿床的地方之一。奥西奥拉县和梅科斯塔县正在考虑建立一个钾盐开采和加工设施。该设施将生产美国消耗的约 10% 的钾盐。该设施将使美国钾盐产量翻一番(Jasinski)。该设施还将开采盐。密歇根钾肥公司估计钾肥总产量为每年 650,000 吨;还将生产额外的 900,000 吨盐。计划生产多达 975,000 吨钾肥和 1,350,000 吨盐。该公司还预计,该项目建设阶段将创造约 260 个建设岗位,一旦该设施投入运营,将创造 184 个岗位。还应注意的是,每年将需要额外的 2500 万美元资本支出。