^^^ Tanabe, Y., 121-139 致密型 (CT), 7,48,65, 104, j - ^ ^ ^ ^ ^ ^ ^ ^u g, 16, 103, 211 122, 149, 175, 193, 215, 275 ^^^j^^^ ^ L., 5-30 锁孔, 296 j ^ ^ ^ ^ j j ^ ^ j ^ ^ ^^^_^J2 光谱载荷, 246,257,261,297 j^ansgranular, 8,20, 51, 70,91, 107, 稳定性, 19 155^ 30^ 堆垛层错能, 38 转变点, 8, 98 钢透射电子显微镜奥氏体,122(TEM)34 97奥氏体不锈钢,6,16,32,175,y^联合设计,'164'^^孪生,20,56,76铸碳和低合金,142,294铁-镍,6铁-硅,64,106 4340,193Vacas-Oleas,C,140-160,293-312高锰,32,48,121真空,85,182马氏体时效,19真空熔炼,32,48,65温和,43,275Verkin,B.I.,84-101Stephens,R.I.,1-2,140-160, 293- 空洞,158 312,315-320 应变幅,32,35,143 W 应力强度因子 ^ang,C.M.,293-312 闭合(^ci)或打开(/Top),67,^^^^ 预应力,194 ^^' '^^' 2^^^ 焊缝/焊接件,8,122,175,275 有效(A^eff),67,71,181,196,^jj^gj,^ ^ 210-237 283 固有有效(AKett),114 X 阈值(AKth),65,71,87,106,152,174,178,194 ^"'"^y衍射,87 应力集中因子(^t),253,y 296 应力释放,275 屈服强度,34,69,96,142,175 拉伸区,135 Yokobori,T.,121-139 条纹,8,51,87,91,107,155,杨氏模量,7,18,77,97,133,199,287,304 184,220,278 亚晶粒,97 钇,212 取代原子,42 Yu,W.,63-83
PAGE 简介 1 奥氏体铬镍钢中 Sigma 相的识别、形成和再溶解方式——E.J. Dulis 和 G. V. Smith 3 讨论 30 几种铸造奥氏体钢中的 Sigma 相——V.T. Malcolm 和 S. Low 38 讨论 45 各种合金系统中 Sigma 相的 X 射线研究——Pol Duwez 和 Spencer R. Baen。4 8 讨论 55 含铁或镍的铬钼合金中的 Sigma 相——John W. Put-man,N. J.Grant 和 D. S. Bloom 61 讨论 69 铁铬系统中 Sigma 相的四方性——L.Menezes、J. K. Roros 和 T. A.阅读 71 讨论 74 17% 铬钢中 Sigma 相的形成——J.J. Heger 75 讨论 79 Sigma 相以及高温下长时间加热对 25% 铬-20% 镍钢的其他影响——G.N. Emmanuel 82 Sigma 相的出现及其对铸造 Fe-Ni-Cr 合金某些性能的影响——J.H. Jackson 100 联合讨论 120 Sigma 的形成及其对稳定化 18% 铬 - 8% 镍钢在浓硝酸中行为的影响——Ray-mond S. Stewart 和 Stephen F. Urban 128 关于含钶 18-8 钢在高温下的结构和抗冲击性的一些注释——W.O. Binder 146 讨论 164 观察 Sigma 对奥氏体不锈钢中钶稳定化焊件的机械性能的影响——F.W. Schmitz 和 M. A. Scheirf.165 讨论 178
PAGE 简介 1 奥氏体铬镍钢中 Sigma 相的识别、形成和再溶解方式——E. J. Dulis 和 G. V. Smith 3 讨论 30 几种铸造奥氏体钢中的 Sigma 相——V. T. Malcolm 和 S. Low 38 讨论 45 各种合金系统中 Sigma 相的 X 射线研究——Pol Duwez 和 Spencer R. Baen。4 8 讨论 55 含铁或镍的铬钼合金中的 Sigma 相——John W. Put-man、N. J. Grant 和 D. S. Bloom 61 讨论 69 铁铬系统中 Sigma 相的四方性——L. Menezes、J. K. Roros 和 T. A. Read 71 讨论 74 17% 铬钢中 Sigma 相的形成——J. J. Heger 75 讨论 79 Sigma 相及高温长时间加热对 25% 铬 -20% 镍钢的其他影响——G. N. Emmanuel 82 Sigma 相的出现及其对铸造 Fe-Ni-Cr 合金某些性能的影响——J. H. Jackson 100 联合讨论 120 Sigma 的形成及其对稳定化 18% 铬 - 8% 镍钢在浓硝酸中行为的影响——Raymond S. Stewart 和 Stephen F. Urban 128 关于含钶 18-8 钢在高温下暴露后的结构和抗冲击性的一些注释——W. O. Binder 146 讨论 164 关于 Sigma 对奥氏体不锈钢中钶稳定化焊接件力学性能的影响的观察——F. W. Schmitz 和 M. A. Scheirf。165 讨论
描述和应用 AI-1721 是一种 MIG 焊丝,设计用于堆焊在高温下受到单一或组合金属对金属磨损影响的部件,这些部件在高温下会反复受到热循环、摩擦、磨损、高冲击、氧化和腐蚀,最高温度可达 1150°C。沉积物具有可加工的额外优势。奥氏体型固溶体,沉淀有细分散的 Cr + Mo 碳化物。应用包括:热剪切刀片、锻造底模、切割盘、热加工工具、耐磨垫、蒸汽阀、阀座和主轴、锭块和钢坯支架。
主要因为其优异的耐腐蚀性能而广泛应用于工业领域[1–5]。304 不锈钢是一种奥氏体钢,广泛用于化工厂管道和许多其他可能承受循环载荷的应用。疲劳寿命和裂纹起始位置的预测是工厂结构设计的重要方面。疲劳失效通常是由小于晶粒尺寸的微裂纹的产生引起的,然后微缺陷生长并融合为主要裂纹,接着是主要宏观裂纹的稳定扩展,最后是结构不稳定或完全断裂[6]。奥氏体不锈钢因其优异的力学性能而被广泛用作反应堆冷却剂管道、阀体和容器内部构件的核结构材料[7]。
增材制造 (AM) 仍是一项相对较新的技术。与从毛坯中去除材料的传统加工不同,AM 用于从空工作空间开始将原料逐层熔合成复杂形状。AM 能够制造复杂的零件几何形状和零件变体,而几乎无需额外制造成本。以前不可能制造的几何形状现在可以作为设计选项使用,例如弯曲的内部通道、复杂的晶格结构和设计的表面孔隙率 - 所有这些都可以重复生产。电子束粉末床熔合 (PBF-EB) 是一种 AM 方法,其中使用电子束将细颗粒粉末加工成零件。自诞生以来,PBF-EB 一直受到可供加工的材料数量的限制。本论文的目的是探索使用 PBF-EB 加工不锈钢的可能性。这项工作的重点是开发高效加工参数,目的是获得高密度成品材料,并了解工艺参数与零件由此产生的微观结构和其他质量方面之间的关系。两种不锈钢粉末,316LN(奥氏体)和超级双相 2507(奥氏体/铁素体),通过各种工艺参数使用各种熔化策略加工成固体零件。在选择一组以高加工速率生产高质量零件的参数之前,对密度、微观结构特征和机械性能进行评估和评定。这项工作的结论是,不锈钢非常适合 PBF-EB 加工,具有宽广的加工窗口。研究还表明,材料性能受所用加工参数的影响很大。对于超级双相不锈钢 2507,制造的部件需要进行制造后热处理才能达到所需的微观结构、相组成和拉伸性能,而 316LN 则可以在更大程度上直接使用,只要使用适当的制造准备和加工参数即可。
本研究介绍了一种估算奥氏体不锈钢 304、304L、316 和 316L 型裂纹扩展的方法,这些不锈钢通常用作核压力容器的结构材料。这些结构部件通常要经受中子辐照和组合载荷,包括启动和关闭引起的重复机械应力(即疲劳)以及高温下加载期间引起的蠕变。在本研究中,使用基于条带屈服的疲劳裂纹扩展模型估算疲劳裂纹长度。该模型扩展为包括存在保持时间时的蠕变变形的影响,并扩展为包括辐照的影响。与文献中可用的实验数据相比,可以对各种组合载荷条件下选定的材料获得合理的裂纹扩展估计值。
【主要发表论文】 [1] T. Furuhara,Y.-J. Zhang,M. Sato,G. Mimamoto,M. Enoki,H. Ohtani,T. Uesugi,H. Numakura:“高强度钢的亚晶格合金设计-间隙和替代溶质纳米级聚集的应用-”,Scripta Materialia,223(2023),115063 [2] T. Furuhara,Y.-J. Zhang,G. Miyamoto:“转变界面在先进高强度钢设计中的作用”,IOP会议系列:材料科学与工程,580(2019),012005。 [3] X.-G.张,G. Miyamoto,Y. Toji,S. Nambu,T. Koseki,T. Furuhara:“Fe-2Mn-1.5Si-0.3C合金中马氏体回复奥氏体的取向”,材料学报,144(2018),601-612。
缩写 ADA – 自动数据分析 ASME 规范 – 美国机械工程师学会锅炉和压力容器规范 CASS – 铸造奥氏体不锈钢 CNN – 卷积神经网络 CS- 碳钢 DMW – 异种金属焊缝 DNN – 深度神经网络 DR – 检测率 EPRI- 电力研究所 FPR – 假阳性率 ISI – 在役检查 ML – 机器学习 NDE – 无损检测 ORNL – 橡树岭国家实验室 POD – 检测概率 PNNL – 太平洋西北国家实验室 ROC – 接收者操作曲线 RVUH – 反应堆容器上封头 TFC – 热疲劳裂纹 TPR – 真阳性率 UT – 超声波检测(超声波、超声波检查等)UV – UltraVision VP – VeriPhase WSS – 锻造不锈钢
查尔姆斯理工大学摘要:尽管激光粉末床熔合 (LB-PBF) 作为一种增材制造技术具有突出地位,但获准用于该工艺的合金数量仍然有限。在传统制造中,铁合金是最常见的合金组,主要由普通碳钢和低合金钢组成。然而,在 LB-PBF 中,铁合金的生产仅限于少数奥氏体/沉淀硬化不锈钢和工具钢。普通碳钢和低合金钢的缺乏源于碳在加工过程中的负面影响,这会促进成品材料内开裂缺陷的形成。因此,为了扩大 LB-PBF 的机会,必须了解如何加工这些含碳铁合金。本研究探讨了各种普通碳钢(0.06 至 1.1 wt.% C)和低合金钢(4130、4140、4340 和 8620)的 LB-PBF 加工性能和微观结构。微观结构分析发现,成品试样由回火马氏体组成,这种回火马氏体是由于 LB-PBF 过程中的初始快速冷却和随后的固有热处理而形成的。此外,在 C 含量≥0.75 wt.% 的合金中观察到残余奥氏体的存在,这是由于马氏体转变温度降低,导致冷却至室温时部分奥氏体未转变。就缺陷而言,成品试样内的孔隙率可能与所选的体积能量密度 (VED) 和合金的碳含量有关。在低 VED 下,试样含有与未熔合孔隙有关的大而不规则的孔隙,而在高 VED 下,试样含有与小孔隙有关的圆形中等大小的孔隙。就碳含量而言,发现增加碳量可减少低 VED 下的未熔合孔隙的数量,而增加高 VED 下的小孔隙的数量。未熔合孔隙的减少是由于熔池的润湿性和流动性改善,而小孔隙的增加是由于碳含量较高导致熔池深度增加。除了孔隙之外,在一些普通碳钢和低合金钢中还观察到冷裂纹,形成于硬度超过某些阈值的试样中:Fe-C 合金为 ≥425 HV,4140 合金为 >460 HV,4340 合金为 >500 HV。增加 VED 或激光功率会降低样品硬度,因为这两个因素都会增强 LB-PBF 的固有热处理。这意味着如果使用足够大的 VED 或激光功率,就可以避免(某些合金中的)开裂。碳含量还会影响成品样品的硬度,从而影响开裂敏感性,这一发现解释了为什么低碳合金(<0.43 wt.% C)在任何测试的 VED 下都不会出现开裂,而高碳合金(≥0.75 wt.% C)会在任何测试的 VED 下出现开裂。% C) 在每次测试的 VED 中都出现开裂。利用这些发现,建立了加工窗口,无需预热构建板即可生产出高密度 (>99.8%)、无缺陷的普通碳钢和低合金钢样品。