哈里森 (Harrison) 所描述的 Rua 描绘了 tohunga (专家) 心中的储藏室或仓库,以 waiata、编织和雕刻来体现。然而,只有入门者才能解读它,其中许多人现在已经通过了。阿兰加 (Aranga) (2009) 列出并定义了 13 种 Rua(其中一些在此处描述),包括 Rua-i-te-mahara(思考和记忆的力量,思想的假设)、Rua-i-te-whaihanga(建造或建造,创造的假设)和 Rua-i-te-kōrero(拟人化的思想,口语的假设)。汉纳拉 (Hanara) (2020) 扩展了该列表,包括 23 种不同形式的 Rua。史密斯 (Smith) (2000) 讨论了 Te Whānau-a-Rua(认知生物家族),它指的是 Rua 与记忆知识的联系,特别是 whakapapa kōrero。与其他研究过“儒家思想”概念的学者一样,史密斯也强调“儒家思想”的各个阶段和类型与西方的思维观念有相似之处。
本次拟发行股份不超过 10,000.00 万股,且占发行后总股本的 比例不低于 25% ,超额配售部分不超过本次新股发行总数的 15% 。若全额行使超额配售选择权,则本次发行股票的数量 不超过 11,500.00 万股。 本次发行均为新股,不安排股东公开发售股份。
2024 2025 十二月 一月 27 28 29 30 31 1 2 3 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12
1. 大会在关于防止外空军备竞赛的进一步实际措施的第 77/250 号决议中请秘书长设立一个联合国政府专家组,其成员最多为 25 个会员国,在公平和公正的地域代表性基础上选出,负责审议并就防止外空军备竞赛的具有法律约束力的国际文书的实质性内容提出建议,其中包括防止在外空军备竞赛在外空军备竞赛方面的内容。大会决定,新成立的政府专家组将以协商一致方式开展工作,不影响各国在未来谈判中的立场,并在日内瓦举行两次为期两周的会议,一次在 2023 年,另一次在 2024 年,并请秘书长向大会第七十九届会议和裁军谈判会议 2025 年会议前转交政府专家组的报告。
2015–2017 博士研究。{ 开发和并行实施用于解决玻尔兹曼方程的保守投影离散速度法 { 稀薄气体流动的数值和渐近分析,包括受大温度变化驱动的流动 2009–2014 博士研究,莫斯科物理技术学院,多尔戈普鲁德内。{ 设计和开发高性能计算的问题解决环境 { 开发动力学和流体动力学型方程的数值方法和算法 { 一些经典分子气体动力学问题的计算机模拟
量子信息和计算处理需要通过可行的操作和复合量子系统的测量来控制合适的资源。量子网络的构建块(颗粒)通常是相同的子系统(例如,物理Qubits,两级原子,光子,电子,准粒子),可以是玻色子或费米子[1-3]。当复合系统由非相同(或可区分的)粒子制成时,用于利用其量子源的良好操作框架(例如纠缠或连贯性)是基于本地操作和经典通信(LOCC)[4]。LOCC框架内的本地操作是指在每个粒子(粒子位置)上应用的。当然,对于由空间上覆盖的相同颗粒制成的量子网络是不可能的,这些粒子是无法区分且不可添加的。因此,在相同粒子系统中的量子资源的直接识别和利用仍然难以捉摸和挑战。这个问题一直在阻碍基于相同粒子的量子增强技术的期望发展。
2021 年 5 月,作为奥里利亚市官方计划更新的一部分,该市研究了在 2051 年之前容纳新增人口的方法。作为该市流程的一部分,完成了对可考虑用于定居区边界扩展的土地的技术土地评估。该市还在其市政边界内寻找机会增加开发密度以容纳新增人口。这一过程包括社区和利益相关者协商,并完成了多项技术研究,审查了农业影响、水资源、社区连通性、紧急服务和市政服务要求。该镇与市政府合作,积极参与解决 15 号线和巴斯湖侧路地区的交通、行人基础设施、对巴斯湖和地区湿地的环境影响以及优质农业用地保护的过程。
神经退行性疾病是由细胞和神经元在大脑和周围神经系统的功能丧失引起的疾病,包括阿尔茨海默氏病(AD),帕金森氏病(PD),杏仁核外侧硬化症(ALS)以及额叶摄取症状(FTD)和其他。由于对神经退行性疾病的病理机制不完全理解,目前可用的治疗方法只能减轻某些相关症状,并且仍然缺乏有效的治疗方法。大多数神经退行性疾病具有常见的细胞和分子机制,这是淀粉样蛋白样蛋白聚集体和包含体的形成。神经退行性疾病中蛋白质聚集体的广泛存在表明它们在疾病发生和进展中的特殊作用。长期以来,成核和聚集被认为是蛋白质骨料形成的唯一途径。然而,最近的研究表明,这些蛋白可能会经历另一个聚集过程,即液相分离介导的聚集。相分离是生物分子通过弱的多价相互作用形成动态凝结的过程。在这些冷凝物中,生物分子浓度高度富集,并且仍然与外部环境保持动态交换。相分离是由弱的多价相互作用(例如静电,π相关,氢键和疏水相互作用)介导的。对于特定分子,它们的相分离行为可能主要由一个或某些相互作用介导。但是,生活系统中的相互作用更为复杂。有很多工作着眼于在各种系统中做出重大贡献的相互作用类型。这些发现可能有助于我们进一步了解序列上的小扰动者如何改变相位分离行为,以及为什么自然发生的突变会产生重要的生理和生物物理效应。在活生物体中进行相分离的蛋白质通常包含本质上无序的区域(IDR)或本质上无序的蛋白质(IDP)。淀粉样蛋白通常具有这种特征。这样的IDR/ IDP没有稳定的折叠结构,并且以动态形式存在于解决方案中。由于缺乏清晰的三维结构,IDR/IDP具有更高的动力和灵活性,因此为分子间接触和相互作用提供了更多机会。近年来,研究人员表明,许多神经退行性疾病与淀粉样淀粉样蛋白样蛋白可以进行相分离,这表明淀粉样蛋白样蛋白和病理学的相行为之间存在潜在的关联。在这里,我们总结了有关几种神经退行性疾病相关的淀粉样蛋白的相分离和聚集的最新研究,包括Aβ,TAU,α-突触核蛋白,TDP-43和SOD1。它们是与神经退行性疾病相关的典型病理蛋白,并且已被证明与过去几十年中相关疾病具有很高的相关性。他们的共同特征是患者中发现的淀粉样蛋白聚集体。最近的研究表明,它们也具有相分离的特性,这可能与病理聚集体的形成相关。因此,我们总结了这些淀粉样蛋白的相位行为的最新研究,这可能带来调节相关病理过程和治疗疾病的潜在机会。我们希望本文可以帮助加深对神经退行性疾病中蛋白质的病理机制的理解,并激发疾病治疗的新思想。