缅因大学位于缅因州奥罗诺,是该州的土地赠与和海洋赠与机构。缅因大学通过其明确的全州教学、研究和公共服务外展使命为其所在州服务。缅因大学提供 90 个四年制、61 个硕士学位和 24 个博士学位课程,提供缅因州最多样化和最先进的选拔课程。卡内基
狄拉克海的起源在于狄拉克方程的能谱,狄拉克方程是与狭义相对论一致的薛定谔方程的扩展,狄拉克于 1928 年提出了这个方程。虽然这个方程在描述电子动力学方面非常成功,但它有一个相当奇特的特征:对于每个具有正能量的量子态,都有一个相应的能量为 - 的状态。当考虑孤立电子时,这不是一个大困难,因为它的能量是守恒的,而负能量电子可能会被忽略。然而,当考虑电磁场的影响时,困难就出现了,因为正能量电子能够通过不断发射光子来释放能量,随着电子下降到更低的能量状态,这个过程可以无限持续下去。
诺斯罗普·格鲁曼公司任务扩展飞行器 (MEV) RPO 成像仪在 GEO 上的性能 Matt Pyrak 诺斯罗普·格鲁曼空间系统 约瑟夫·安德森 空间物流有限责任公司 摘要 本文将描述和说明由诺斯罗普·格鲁曼公司制造的空间物流有限责任公司任务扩展飞行器 (MEV) 使用的会合和近距操作 (RPO) 传感器的实际性能。MEV-1 于 2019 年发射,并于 2020 年 2 月与位于 GEO 墓地轨道上距离 GEO 约 300 公里的 Intelsat 901 卫星执行会合、近距操作和对接 (RPOD)。MEV-2 于 2020 年发射,并于 2021 年 2 月和 3 月与直接在地球静止轨道上的 Intelsat 10-02 卫星执行了类似的 RPOD 序列。这些飞行器使用三种不同的传感现象来提供所有必要的相对导航数据,以实现上述 RPOD 功能。这些包括可见光谱成像仪(窄视场和宽视场)、长波红外 (LWIR) 成像仪(窄视场和宽视场)和主动扫描激光雷达。本文将探讨这些传感器在 GEO 实际任务中的性能及其对未来空间态势感知能力的潜在影响。1. 简介 Space Logistics LLC 任务延长飞行器 (MEV) 是其主承包商 Northrop Grumman Space Systems (NG) 和 NG 的几家传统公司十多年开发工作的成果。MEV 被认为是新卫星服务市场中的第一代能力,它为未设计为需要维修的航天器提供宝贵的寿命延长服务。MEV 基于 Northrop Grumman 的传统 GEOStar 航天器平台构建,并采用了两项关键技术发展。第一个是准通用对接系统,它与目前在轨的大多数最初未设计为对接的 GEO 航天器兼容。第二,是整合了强大而灵活的 RPO 传感器套件,该套件由尖端硬件和软件组成,这些硬件和软件基于诺斯罗普·格鲁曼的传统 RPO 系统,包括 Cygnus 空间站补给飞行器。MEV 可延长未为在轨加油而建造的卫星的寿命。为了执行任务,MEV 与客户飞行器进行半自动会合,并使用大约 80% 的 GEO 卫星上存在的两个功能与其对接,这两个功能是面向天顶的液体远地点发动机 (LAE) 喷嘴和周围的发射适配器环。对接后,客户飞行器的推进系统和姿态控制完全禁用,从而使 MEV 能够全权负责客户飞行器的指向和轨道管理。虽然 MEV 对接系统无疑是艺术巧思的杰作,但本文将仅探讨 MEV RPO 传感器套件的性能,一组抗辐射尖端传感器,为 MEV 相对导航算法提供原始数据。这些包括可见光谱摄像机组、长波红外 (LWIR) 摄像机组和扫描激光雷达。RPO 传感器套件允许 MEV 从 50+km 处跟踪客户车辆,并在精确对接事件期间保持厘米级的相对位置。根据客户要求,MEV 和下一代车辆可以使用其传感能力从近距离对客户车辆进行多光谱检查,并通过激光雷达收集高密度 3D 检查扫描。但对这种能力最直观的展示来自 MEV-1 对接后发布的首批从 GEO 上方拍摄的在 GEO 带中处于活跃运行状态的航天器商业图像。
纳尔逊于 2018 年中期通过收购轨道 ATK 加入诺斯罗普·格鲁曼公司,不久后担任诺斯罗普·格鲁曼公司的首席技术策略师、NG 研究员,领导建立了基于云的集成数字环境,供全公司使用,直至 2022 年。在轨道 ATK,纳尔逊是产品生命周期管理 (PLM) 学科的技术研究员。纳尔逊在轨道 ATK 工作了 10 多年,有幸参与了多个令人惊叹的项目,包括航天飞机、三叉戟 D5 导弹、太空发射系统、猎户座发射中止和多个商业项目,以满足他们基于模型的数据管理需求。
日期:2022 年 9 月 30 日 联系人:公共事务部 电话:(310) 653-3145 sscpa.media@spaceforce.mil
彼得·阿本兹(Peter Arbenz),瑞士联邦技术研究院,贾科莫·卡布里(Giocomo Cabri),摩德纳大学和雷吉奥·埃米莉亚(Reggio Emilia),菲利普教堂,迪金大学,弗雷德里克·德科兹(Deakin University),弗雷德里克·德科兹(Frederic Desprez),格勒诺布尔·罗纳·阿尔皮斯(GrenobleRhône-Alpes)和利格实验室,雅科夫·费特(Yakov Fet萨勒诺,费尔南多·冈萨雷斯,佛罗里达墨西哥湾海岸大学,达尔万·格里布勒,里奥·格兰德·德·苏尔,里奥格兰德大学天主教大学维奥雷尔·尼格鲁(Viorel Negru),西蒂索拉(West ofimisoara),威斯瓦瓦·帕沃夫斯基(WiesławPawłowski),格达斯克大学,沙赫拉姆·拉希米(Shahram Rahimi),密西西比州立大学,威尔逊·里维拉(Wilson Rivera-Gallego),波多黎各大学,订阅,订阅信息:请访问http:///wwwwww.scpe.org彼得·阿本兹(Peter Arbenz),瑞士联邦技术研究院,贾科莫·卡布里(Giocomo Cabri),摩德纳大学和雷吉奥·埃米莉亚(Reggio Emilia),菲利普教堂,迪金大学,弗雷德里克·德科兹(Deakin University),弗雷德里克·德科兹(Frederic Desprez),格勒诺布尔·罗纳·阿尔皮斯(GrenobleRhône-Alpes)和利格实验室,雅科夫·费特(Yakov Fet萨勒诺,费尔南多·冈萨雷斯,佛罗里达墨西哥湾海岸大学,达尔万·格里布勒,里奥·格兰德·德·苏尔,里奥格兰德大学天主教大学维奥雷尔·尼格鲁(Viorel Negru),西蒂索拉(West ofimisoara),威斯瓦瓦·帕沃夫斯基(WiesławPawłowski),格达斯克大学,沙赫拉姆·拉希米(Shahram Rahimi),密西西比州立大学,威尔逊·里维拉(Wilson Rivera-Gallego),波多黎各大学,订阅,订阅信息:请访问http:///wwwwww.scpe.org
• DAR*,L. Ding* 等人。具有 Fluxonium 量子比特的快速高保真门的圆极化驱动和相称脉冲。准备中(2024 年)。• L. Ateshian,DAR 等人。Fluxonium 量子比特相干性:温度和磁场依赖性的表征。准备中(2024 年)。• DAR 等人。弱磁场下超导量子比特中 1/𝑓 通量噪声的演变。物理评论快报(2023 年)。[链接] • B. Kannan、A. Almanakly、Y. Sung、A. Di Paolo,DAR 等人。使用波导量子电动力学的按需定向微波光子发射。自然物理(2023 年)。[链接] • DAR,PJ Atzberger。具有相分离域的异质囊泡的粗粒度方法:形状波动、板压缩和通道插入的弹性力学。数学与计算机模拟(2023 年)。[链接] • DAR、M. Padidar 和 PJ Atzberger。表面波动流体动力学方法用于弯曲流体界面内粒子和微结构的漂移扩散动力学。计算物理学杂志(2022 年)。[链接]
工作相关技能 Amalia Barone 的主要研究兴趣是利用基因组工具研究遗传资源的变异性,并将其应用于植物育种的传统和创新策略。近年来,她的基础研究主要集中在提高番茄果实品质和增强对非生物胁迫的耐受性。她的研究活动针对野生物种或其他种质来源的基因组和转录组的研究,以检测决定理想表型的等位基因变异。高通量基因分型平台与深度形态生理多性状评估相结合是她目前使用的育种方法,用于识别参与对非生物胁迫耐受性反应的关键基因。最近,基因组编辑技术的发展促使她开始在研究中使用 CRISPR-Cas 9,以了解可能与果实品质有关的候选基因的作用。 数字技能 熟悉 Web 服务器、茄科数据库服务器和 Microsoft Office 软件。
