该预印本版的版权持有人于2021年10月13日发布。 https://doi.org/10.1101/2021.10.12.464038 doi:Biorxiv Preprint
摘要。养殖养殖或水产养殖,在满足全球对海鲜的需求和减轻对野生渔业的压力至关重要。然而,它的扩展构成了环境挑战,尤其是在生物多样性保护方面。科学文章强调了平衡水产养殖生长与生物多样性保护的重要性。它探讨了减轻负面影响的策略,强调可持续和负责任的水产养殖。政府,行业和环境团体之间的合作努力对于协调养鱼和生物多样性保护至关重要。抽象研究了水产养殖与生物多样性之间的复杂相互作用,强调了对可持续和韧性未来的创新解决方案的需求。本文深入研究了水产养殖与生物多样性之间的复杂相互作用,强调需要创新解决方案,以实现可持续和韧性的未来。随着养鱼的扩展以满足全球海鲜需求,出现了潜在的环境挑战,尤其是关于生物多样性的保护。该文件强调了在鱼类养殖安排和保护工作之间找到微妙平衡的重要性。讨论了各种策略和实践,以减轻对水生生态系统的负面影响,突出了可持续和负责任的水产养殖发展的必要性。政府,行业参与者和环境组织之间的合作努力对于促进养鱼和生物多样性保护之间的和谐共存至关重要。最终,摘要提供了对水产养殖与生物多样性保护之间复杂关系的见解,敦促探索创新的解决方案,以实现更可持续的未来。
多氯联苯 (PCB) 和多溴二苯醚 (PBDE) 是持久性有机污染物 (POP),以复杂混合物的形式存在于所有环境区域,包括水生生态系统中。然而,人们对这种复杂混合物对硬骨鱼类行为的影响知之甚少。在这项研究中,斑马鱼 (Danio rerio) 从受精后 5 天起通过饮食长期接触含有 22 种 PCB 和 7 种 PBDE 同源物的环境相关混合物 (MIX)。暴露于 MIX 的 F0 鱼产下的后代 (F1 和 F2 代) 以普通食物喂养并长大至成年。在每一代中,通过不同实验设置的平均值评估五种行为特征 (即大胆、活跃、社交、探索和焦虑)。确定了两种不同的行为综合征:大胆,与活动和探索呈正相关;焦虑,与低社交性有关。 F0 代鱼没有表现出任何因接触持久性有机污染物而导致的行为紊乱,而 F1 代混合鱼则比其他代鱼更大胆,但与 F1 代对照组并无明显差异。F2 代混合鱼表现出的焦虑综合征比 F2 代对照组更严重。这一点尤为重要,因为后代的此类行为变化可能会产生持久的生态后果,可能会影响健康,从而对接触持久性有机污染物混合物的野生鱼类种群造成不利影响。
如需了解更多信息,请联系:Beth Appert - 摩特诺玛郡环境卫生服务 beth.appert@multco.us / 503-347-5068 / www.multco.us/fish 俄勒冈州卫生局全州鱼类和贝类警告 - www.healthoregon.org/fishadv
新加坡的自然17:e2024092出版日期:2024年9月30日doi:10.26107/nis-2024-0092©国立新加坡大学生物多样性记录:Pufferfish的新记录:Torquigener Gloerfelti的新记录新加坡国立大学,新加坡国立大学117377;电子邮件:nhmlimkp@nus.edu.sg( *通讯作者)推荐引用。Lim KKP,Adib A,Lin J&Sim J(2024)生物多样性记录:新加坡的Pufferfish的新记录,Torquigener Gloerfelti。自然在新加坡,17:e2024092。doi:10.26107/nis-2024-0092受试者:棕色斑点pufferfish,torquigener gloerfelti(teleostei:Tetraodontiformes:Tetraodontiformes:Tetraodontididae)。主题:Keiichi Matsuura。位置和日期:1。Cyrene Shoal的新加坡海峡; 1954年8月12日。2。在樟宜海滩的Johor海峡; 2024年8月21日;大约0620小时。栖息地:1。海洋。可能是珊瑚礁。2。河口海岸。观察者:1。未知,可能是新加坡渔业研究站的工作人员。2。Adib Adris和Sim Jinheng。观察:1。通过“鼻尖到尾鳍底座测量的12.9 cm标准长度)的示例是从约9.1 m的深度中获得的。它被保存下来,目前在新加坡国立大学的Lee Kong Chian自然历史博物馆的动物参考系列中保存,并在那里登录为ZRC 66628(图1)。2。(2011)。大约5厘米标准长度的少年示例(图。2&3)在沿着沙洲的浅潮汐池中抓住一条手es。备注:Torquigener的成员与该地区的其他河豚有区别,它具有独特的下巴,末端口,鼻腔器官,被一个带有两个鼻孔的小囊覆盖,沿其身体的下侧和尾部花梗的凸起的皮肤折叠(Matsuura,2001)。Torquigener Gloerfelti由Hardy(1984)根据印度尼西亚的巴厘岛,Sumba和South Java的标本描述。它的标准长度约为20厘米,并具有伸长的身体,背侧和腹侧扁平。旋转在其背部的背面到背鳍起源之前的背部存在,其中7至9个旋转位于外侧线的中间分支后面。背面和侧面有不规则形状的棕色圆圈和斑点,腹部是白色的,尾鳍的侧面有深褐色的远端边缘。该物种出现在沙质泥中底物上的浅水中(见Matsunuma,2011年)。特色标本似乎代表了新加坡Torquigener属的第一批记录(参见Wang&Lim,2011; Jaafar等,2024)。Torquigener Gloerfelti已从Matsunuma等人的Terengganu(马来西亚半岛)附近的南海记录。尽管它在新加坡水域的存在并不罕见,但它似乎并不常见。致谢:Kelvin K. P. Lim感谢Keiichi Matsuura博士帮助验证这里介绍的Pufferfish标本的身份。
(p h e n o l,c h i o rofo r m,i so m y i a a a a a a cohol)在已经孵育的混合物中,然后摇动5分钟,然后以3,000 rpm的速度离心10分钟。将上清液层被取出并放入新的管中,并添加了PCL溶液与上清液相同。获得上清液后,从PCL溶液中分离的结果,然后加入接下来的700 mL Cl溶液(氯形,lsoamylalkohol),然后搅拌5分钟,然后以10分钟之间3,000 rpm的速度离心。在此阶段获得的上清液中增加了100毫升3M乙酸钠和1,000 mL的葡萄酒啤酒(99.5%);并储存-10'C 30分钟。DNA通过以5,000 rpm的速度离心10分钟,然后将上述项目放电并在RR中干燥DNA,从而沉积了DNA。在干燥后加入50-100 ml“ iris'hdta(TE)自助过程,并将其存储在4oC中,然后在下一阶段使用。
对涉及农产品(芽苗除外)种植活动的农业供水系统、农业用水实践、作物特性、环境条件和其他相关因素(包括检测结果,如适用)进行评估,以便:(1)识别可能将已知或合理可预见的危害引入涉及农产品或食品接触表面的任何条件;(2)确定是否合理必要采取措施,以降低涉及农产品或食品接触表面受到此类已知或合理可预见的危害污染的可能性。
Tübingen und Freiburg ENU 筛选和 Sanger ZMP 项目(全基因组蛋白质编码基因敲除) • 为欧洲实验室提供简单且经济高效的途径获取这些品系 • 镜像美国资源中心 ZIRC 的热门品系 • 提供额外资源,如质粒、基因组图谱、筛选、培训
单个年龄的抽象确定是对鱼类种群进行准确评估的重要一步。在非热带环境中,鱼耳石(耳石)中环状生长模式的手动计数是标准方法。它依赖于视觉手段和个人判断,因此受到偏见和解释错误的影响。基于机器学习的自动模式识别的使用可能有助于克服此问题。在这里,我们采用了两种基于卷积神经网络(CNN)的深度学习方法。第一种方法利用蒙版R-CNN算法在主要的耳石读数轴上执行对象检测。第二种方法采用U-NET体系结构对耳石图像进行语义分割,以隔离感兴趣的区域。对于这两种方法,我们都应用了一个简单的后处理来计算返回的输出掩码上的环,这与年龄预测相对应。多个基准测试表明我们实施方法的有希望的性能,可与基于经典图像处理和传统CNN实现的最近发布的方法相媲美。此外,与现有方法相比,我们的算法表现出更高的鲁棒性,同时还具有推断缺失的年龄组并适应新域或数据源的能力。关键词:鱼年龄读数;自动化;深度学习;对象检测;分段
整个大脑中神经动力学的详细量化将是真正理解感知和行为的关键。随着显微镜和生物传感器工程方面的最新发展,斑马鱼在神经科学方面的大尺寸和光学透明度可以使成像访问其整个大脑,从而在细胞甚至亚细胞分辨率上访问整个大脑。但是,直到最近,许多神经生物学见解在很大程度上是相关的,或者几乎没有机械洞察力对不同类型的神经元产生的脑部人群动态。现在,斑马鱼现在越来越复杂的行为,成像和因果干预范例,揭示了整个脊椎动物大脑的功能。在这里,我们回顾了最新的研究,即早期的技术进步浪潮所承诺的。这些研究揭示了大脑广泛的神经处理的新特征以及综合研究和计算建模的重要性。此外,我们概述了解决更广泛的大脑尺度电路问题所需的未来工具。