因为纤维素和PET在化学上是完全不同的,因此对这两种聚合物的分析是通过溶液 - 气相色谱法分析是一项简单的任务。当材料(尤其是一个太大的分子而无法通过GC分析)的材料被毒死时,它会分解成较小的分子,该分子保留了原始聚合物的化学信息。这些较小的分子可以通过GC分析,产生代表父材料诊断片段的峰的模式。图1显示了从加热至750°C的棉线产生的热解色谱图(图片)15秒。当纤维素热降解时,它会产生水和二氧化碳,以及许多其他有机材料,包括醛和酮。PET降解以产生芳香剂,包括苯,苯甲酸和聚合物的低聚片段。图2显示了宠物服装线的图2,其中苯甲酸在大约11分钟时洗脱。棉花和聚酯纤维的混合物将在图1和2中显示在同一灵性图中的两个峰,因为每个聚合物都基本上是独立的。
不存在。已知的抗营养素包括植酸、棉子糖和胰蛋白酶抑制剂(OECD,2002)。已知植酸能抑制非反刍动物对磷的吸收(OECD,2012)。棉子糖是一种导致腹胀的物质。这些抗营养素的含量以干物质为基础,植酸为 0.5 至 1.26%,棉子糖为 0.09 至 0.41%(AFSI,2023 年)。迷幻 135
叶形被认为是作物育种中最重要的农艺性状之一。然而,棉花叶片形态发生的分子基础仍然很大程度上未知。在这项研究中,通过使用叶片向上卷曲的天然棉花突变体 cu 进行遗传作图和分子研究,成功鉴定出致病基因 GHCU 是叶片扁平化的关键调控因子。使用 CRISPR 敲除棉花和烟草中的 GHCU 或其同源物会导致叶片形状异常。进一步发现,GHCU 促进 HD 蛋白 KNOTTED1-like (KNGH1) 从近轴区域到远轴区域的运输。GHCU 功能的丧失将 KNGH1 限制在近轴表皮区域,导致近轴边界的生长素反应水平低于远轴区域。生长素分布的这种空间不对称产生了 cu 突变体向上卷曲的叶片表型。通过单细胞 RNA 测序和时空转录组数据分析,证实生长素生物合成基因在近轴和远轴表皮细胞中不对称表达。总体而言,这些发现表明 GHCU 通过促进 KNGH1 的细胞间运输,从而影响生长素反应水平,在叶片扁平化的调控中起着至关重要的作用。
PrintRite™ DP 316 是一种浓缩的水性预处理剂,适用于棉和棉涤纶混纺面料上的水性颜料墨水数码印花。一旦使用,它就会提供不可见的效果,对原始织物手感的影响最小。以大约 20% 的固体含量(按重量计算)提供,使用前用去离子水稀释(通常为 4:1)。它是 PrintRite™ DP 306 的浓缩版(以 4.5% 的固体含量(按重量计算)提供即用型液体)。稀释后,PrintRite™ DP 316 可通过喷涂或浸轧应用于浅色棉、涤纶或棉涤纶混纺面料,随后使用水性颜料喷墨墨水进行宽幅、卷对卷、直接到纺织品的数码印花。PrintRite。用去离子水稀释后,最好在 1 周内使用。为了获得最佳性能,请联系您的客户经理或技术市场经理获取DP306/DP316/DP316A加工表。
ESA濒危物种法案1973年的康涅狄格州能源与环境保护部CSWG竞争性州野生动物授予EC ESTERTER ESTERN COTTONTAIL ESF ESF纽约州立大学林业林业的环境Scholl lpwg土地保护工作组Meifw Meifw缅因州缅因州内陆鱼类和MMMR MASSACHUSETT SERVERATIT NE NEFES NETED NE NEFENF>Fish and Wildlife, New England Field Office NEC New England Cottontail NECLMT NEC England Cottontail Land Management Teams NERR National Estuarine Research Reserve NEZCC New England Zoo Conservation Collaborative NFWF National Fish and Wildlife Foundation NGO Non-governmental Organization NHFGD New Hampshire Fish and Game Department NWR National Wildlife Refuge NRCS USDA, Natural Resources Conservation Service NYDEC纽约环境保护部OWG外展工作组PFW鱼类和野生动植物PMWG人口管理工作组RCN区域保护需求计划RIDEM RHODE ISLAND ENVIRENAMEAL ENVOROMENAL MANDICENAL RMWG研究和监测工作组RWPZ RWPZ RWPZ RWPZ RWPZ RWPZ RWPZ RWPZ鱼类和野生动物,新英格兰南部/纽约野生动物沿海计划SWG州野生动物赠款新罕布什尔大学新罕布什尔大学新罕布什尔大学合作社扩展扩展URI URI UNISWER UNISWER ISLY岛USFWS USFWS USFWS USFWS美国鱼类和野生动物服务USGS USGS
咸水滴灌是解决干旱地区淡水短缺问题的一个潜在解决方案。然而,长期使用会使土壤盐分积累并降低磷 (P) 的有效性。生物炭和秸秆改良剂已被证明可以减轻这些影响,但它们在调节长期咸水灌溉下参与磷转化的微生物基因方面的机制仍不清楚。本研究旨在评估生物炭和秸秆掺入对盐灌棉田土壤微生物群落结构和磷有效性的影响。基于 14 年的田间试验,开发了三种处理方法:仅咸水灌溉 (CK)、咸水灌溉加生物炭 (BC) 和咸水灌溉加秸秆 (ST)。结果表明,这两种改良剂都显著提高了土壤含水量、有机碳、总磷、有效磷和无机磷组分 (Ca 10 -P、Al-P、Fe-P 和 OP),同时降低了土壤电导率和 Ca 2 -P 和 Ca 8 -P 组分。生物炭增加了 Chloro flexi、Gemmatimonadetes 和 Verrucomicrobia 的相对丰度,而秸秆则促进了 Proteobacteria 和 Planctomycetota 的丰度。两种处理均降低了几种 P 矿化基因(例如 phoD、phoA)的丰度并增加了与 P 溶解相关的基因(例如 gcd)。相关性研究表明,微生物种群和 P 循环基因与土壤特性紧密相关,其中 Ca 2 -P 和 Al-P 是重要的介质。通常,在长期含盐灌溉下,生物炭和秸秆改良剂可降低土壤盐分,提高土壤 P 的有效性,降低磷循环相关微生物基因的表达并改善土壤特性。这些结果使它们成为可持续土壤管理的绝佳技术。
在输出图像中分别k Depthise(I,J,K)和k点(i,j,k)代表可分开的卷积的操作。