要了解接触电阻的起源,我们对层边界附近的电流分布进行了建模。由于在室温下,NBN的the the the the the the the the the the the the the接触面积的模拟3(a)。建模表明,几乎所有电流都从层的重叠开始时大约10 nm的距离转移到MO。因此,MO接触垫的电阻有助于总电阻。根据图从图中的图中获得的𝑅2(a),多余的电阻为1.3 - 1.5正方形。在我们的样品电流和潜在接触中位于侧面(图1A,B,D,E)。因此,我们在接触板中模拟了90°转动的电流流量,如图3(b)。对各个长度的条进行的仿真表明,两个方形的接触垫贡献了2.7𝑅(图。3(d))比𝑅0的实验值大,可以通过建模的结构和实际样品之间的相应性不确定来解释。
在新时代的能源消耗和结构随着物联网(IoT)和人工智能的增长而发生了变化,数十亿分散的小工具和传感器的功率来源在全球范围内引发了人们的注意以保护环境。由于不可再生能源的使用量增加以及由此产生的环境损害,研究人员正在研究可以利用环境的替代能源系统。因此,通过使用未充分利用的自然废物能源(NGS),可以使用自给自足的小型电子系统。所使用的Ma terials的特征对NGS的工作效果有重大影响。在这方面,二硫化钼(MOS 2)是一种2D材料,是当今讨论的化合物之一,因为它的出色特征使其在各种应用中都有用。已经发表了许多有关MOS 2材料的进步和实施的研究论文,但本文将提供深入的概述。它提供了2D MOS 2纳米材料的主要特性的介绍和解释,从当前状态,属性和各种合成过程开始。后来,审查集中于MOS 2应用和能量收获的CAPA能力,并根据2D MOS 2纳米复合材料进行了对压电,底压和热纳米生成剂的全面研究。
空洞和空位环形成的概率几乎相等。空洞或空位环在何种条件下形成尚待推测;一般认为,除非有空洞成核位点且杂质原子稳定,否则不会形成空洞。如果不满足这些条件,原本会形成空洞的空位(或空洞胚胎)要么迁移到稳定的缺陷凹陷,即空位环,要么保持亚稳态瞬态配置。虽然后一种情况发生的概率较小,但本研究结果似乎支持其发生。当样品在辐照后冷却至室温时,这种配置可以保留,随后在相对较低的温度下重新加热时退火。
2 School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798, Singapore 3 University of Chinese Academy of Sciences, Beijing 100049, China 4 Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea 5 SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, California 94305, USA 6 Cintra CNRS/NTU/Thales,Umi 3288,研究技术广场,637553,新加坡7催化理论中心,丹麦技术大学物理学系,丹麦林格比,丹麦2820 8材料学院,Sun Yat-Sen University,Sun Yat-Sen University,Sun Yat-Sen University,Sun Yat-Sen University,Puangzhou 510275,Cungzhou 510275 Nanyang Technological University Electronic Engineering,639798,新加坡†同等贡献通讯作者。*Byungchan Han:bchan@yonsei.ac.kr; ** pingqi gao:gaopq3@mail.sysu.edu.cn; *** hong li:ehongli@ntu.edu.sg电话:+0065 6790 5519
本文中的数据如有修改,恕不另行通知。由于 AMETEK 产品、本文提供的信息和建议可能会在我们无法控制的条件下使用,因此 AMETEK 不对我们产品的适用性或信息或建议在任何特定情况下的适用性和准确性做出任何明示或暗示的保证。用户全权负责确定 AMETEK 产品是否适用于任何特定用途。
f纳克技术大学,丹麦技术大学物理系,丹麦2820 G材料学院,太阳YAT-SEN大学,广州510275,H中国H中心微型/纳米电子中心(Novitas),电气和电子工程学院,电气和电子工程学院,Nanyang技术大学CNRS/NTU/THALES,UMI 3288,研究技术广场,637553,新加坡†相同的贡献 *相应的作者。Karen Chan:kchan@fysik.dtu.dk; pingqi gao:gaopq3@mail.sysu.edu.cn; Hong Li:ehongli@ntu.edu.sgKaren Chan:kchan@fysik.dtu.dk; pingqi gao:gaopq3@mail.sysu.edu.cn; Hong Li:ehongli@ntu.edu.sg
最近有报道称 NaFe(WO 4 ) 2 在低温下(<4 K)表现出不公度螺旋自旋序,16 尽管由于该材料中共存相反的手性,这种磁性不能诱导净铁电(FE)极化(P)。不同的是,刘等人揭示了 LiFe(WO 4 ) 2 中更有趣的磁螺旋,它通过逆 Dzyaloshinskii − Moriya (DM) 相互作用打破了空间反转对称性并在 19.7 K 以下沿 [010] 轴诱导净 FE P。17 因此,LiFe(WO 4 ) 2 是继第一种 MnWO 4 之后,钨酸盐家族中第二种经实验证实的多铁性材料。 18 , 19 尽管具有共同的化学式,双钨酸盐/钼酸盐的晶体结构却可以在很大范围内变化。事实上,LiFe(WO 4 ) 2 和 NaFe(WO 4 ) 2 的空间群(C 2/ c vs P 2/ m)不同,Fe 离子的排列也不同。这种结构多样性使得在双钨酸盐/钼酸盐中发现更多奇特的磁性成为可能。例如,据报道 RbFe(MoO 4 ) 2
第二,具有侵略性的干蚀刻和湿清洁,对于最佳波导图案至关重要,可能会损害纳米线的制造产量和整体检测器性能。根据所选过程流量,可以实施几种缓解策略。在检测器优先的方法中(在波导蚀刻之前制造纳米线),可以应用封装层以减少纳米线降解。22相反,波导优先的方法(在波导蚀刻后产生纳米线)自然会暴露于侵袭性化学物质中。但是,这种方法可能导致纳米线制造过程的波导质量降解,从而增加了光损失。此外,波导的表面粗糙度可以影响检测器的产量。21在这种情况下,缓冲层20在随后的处理过程中为波导提供了保护,同时也有可能降低表面粗糙度。纳米线的产量也可以通过使用无定形超导体来提高,因为它们的底物要求较少。22
钼二硫化物(MOS 2)是最相关的2D材料之一,主要是由于其半导体的直接带隙,使其成为电子,光电电子和光子学的有希望的材料。[8-10]同时,碳纳米管是研究精通的1D材料之一,可以提供高构成性和载体迁移率,[11,12],这使它们成为与MOS 2的混合尺寸异质结构相关的。的确,一些努力为MOS 2 /碳纳米管异质结构做出了贡献。例如,具有MOS 2和单壁碳纳米管的异质结构已通过干燥转移制造,并制造了垂直的场效应晶体管,该晶体管与MOS 2 /石墨烯设备相比,栅极调制深度增加了三个数量级。[13]混合二维异质结构设备可以用作活跃显示器中的薄膜晶体管,但是所证明的干燥转移显然不是可扩展性生产的理想方法。为了解决这个问题,开发了通过化学蒸气沉积(CVD)在单壁碳纳米管上直接沉积。过渡金属氧化物和硫用作在单壁碳纳米管膜上沉积MOS 2或WS 2的前体。[14]在这项工作中,混合尺寸的侵蚀设备具有吸引人的电气性能和出色的机械稳定性。但是,研究在研究中忽略了混合二维异质结构的堆叠顺序,这些异质结构可以提供对异质结构和电极之间的联系的特征。在这里,我们首次报告了一种直接合成MOS 2 /双壁碳纳米管(DWCNT)< /div>的方法