摘要:本文着重于用于使用车辆中安装的托盘处理机器人自动收集货运的电动货车的自主导航。除了自动驾驶汽车导航外,车辆自治的主要障碍是货运的自主集合,无论货运方向/位置如何。这项研究重点是为车辆产生停车位,而不论货运以其自主收集而定向。货运方向是通过通过板载传感器捕获货运来计算的。之后,此信息使用数学方程式以及对车辆和货运收集限制的知识创建停车位。根据装载舱的可用性,生成了单独的停车位,用于车辆的单独装载湾。最后,将结果捕获和验证,以确定货运的不同方向以结束研究。
摘要:慢性踝关节不稳定性(CAI)患者经常表现出姿势对照,并依靠视觉信息来维持静态平衡以补偿降低的本体感受。疲劳会损害CAI患者外的神经肌肉控制,除了姿势控制外。但是,在CAI患者的单腿平衡测试中,功能疲劳是否会改变姿势控制和感觉组织策略,尚不清楚。本研究涉及对实验室环境中28名CAI患者的对照试验。每个参与者在功能性疲劳方案之前和之后,用眼睛睁开眼睛(EO)进行了单腿平衡测试(EO)。双向重复测量方差分析评估了结果变量的疲劳(Pre-pre-pre-Fatigue)×视觉(EO与EC)相互作用。此外,配对样本t检验检查了两种条件(前与效率)之间的差异,以进行时间限制时间(TTB)minima(%调制)。我们发现ML和AP TTBMEANS和AP TTBSD中的疲劳和视力条件之间的显着相互作用。%调制在AP TTBMEAN,ML TTBSD和AP TTBSD中疲劳后显着降低。总而言之,功能性疲劳协议与EO的静态姿势控制能力降低,但与EC保持不变。这表明,由于视觉依赖性较小,在疲劳下EO的平衡能力降低更为明显。这可能会在疲劳下增加踝关节扭伤的发生率。
Greene,N.,Luo,W。&Kazanzides,P。DVPOSE:自动化数据收集和数据集,用于6D姿势估算机器人手术工具的姿势,在2023年国际医学机器人技术研讨会(ISMR)(ISMR)(2023)(2023),1-7。
1 乌克兰国立高等教育机构“Vasyl Stefanyk Precarpathian 国立大学”,乌克兰,liliavojch2017@gmail.com 2 伊万诺-弗兰科夫斯克国立医科大学,乌克兰,n.golod@ukr.net 3 国立皮罗戈夫纪念医科大学,乌克兰,medredaktor@gmail.com 4 乌克兰国立高等教育机构“Vasyl Stefanyk Precarpathian 国立大学”,乌克兰,zastavnaom@gmail.com 5 国立 Dragomanov 师范大学,chepurnal@gmail.com 6 苏梅马卡连科国立师范大学,乌克兰,petrorybalko13@gmail.com 7 苏梅国立农业大学,乌克兰,homenko.symu@gmail.com 8 Мykhailo Kotsiubynskyi 文尼察国立师范大学,乌克兰,valentina777808@gmail.com 9 国立皮罗戈夫乌克兰纪念医科大学,spkolisnyk@vnmu.edu.ua 10 乌克兰帕夫洛·蒂奇纳乌曼国立师范大学,in77na77@ukr.net
我们介绍了CGAPOSENET+GCAN,它通过使用几何Clifford代数网络(GCAN)增强了CGAPOSENET,这是相机姿势回归的架构。添加GCAN,我们仅从RGB图像中获得了相机姿势回归的几何感知管道。cgaposenet使用Clifford几何代数将四元组和翻译向量统一为单个数学对象,即电动机,可用于独特地描述相机姿势。cgaposenet可以在其他方法中获得综合结果,而无需调查损失功能或有关场景的其他信息,例如3D点云,这可能并不总是可用。cgaposenet就像文献中的几种方法一样,只学会了预测运动系数,并且没有意识到预测位于其几何含义的数学空间。通过利用几何深度学习的最新进展,我们从GCAN上修改了CGAPOSENET:从InceptionV3背骨中获得与摄像机框架相关的可能的运动系数的建议,然后通过在G 4,0中使用的一组层来,将它们通过单个电动机为单个电动机。网络的工作是几何意识,具有多活性价值in-
摘要 — 目的:开颅手术是切除部分头骨,以便外科医生进入大脑并治疗肿瘤。进入大脑时,组织会发生变形,并可能对手术结果产生负面影响。在这项工作中,我们提出了一种新颖的增强现实神经外科系统,将从 MRI 获得的术前 3D 网格叠加到手术期间获得的大脑表面视图上。方法:我们的方法使用皮质血管作为主要特征来驱动刚性和非刚性 3D/2D 配准。我们首先使用特征提取器网络来生成概率图,并将其输入到姿势估计器网络以推断 6-DoF 刚性姿势。然后,为了解释大脑变形,我们添加了一个非刚性细化步骤,该步骤使用基于物理的约束将其表述为形状模板问题,有助于将变形传播到皮质下水平并更新肿瘤位置。结果:我们在 6 个临床数据集上回顾性地测试了我们的方法,并获得了较低的姿势误差,并使用合成数据集表明可以在皮质和皮质下水平实现相当大的脑移位补偿和较低的 TRE。结论:结果表明,我们的解决方案实现了低于实际临床误差的准确度,证明了我们的系统在实际应用中的可行性。意义:这项工作表明,我们可以使用单个摄像机视图提供通过开颅手术观察到的 3D 皮质血管的连贯增强现实可视化,并且皮质血管为执行刚性和非刚性配准提供了强大的功能。
瑜伽近年来已成为世界各地许多人生活的常规部分。这对必要的瑜伽姿势进行了科学研究。瑜伽姿势估计是一种计算机视觉技术,可以预测人体的位置或姿势。姿势检测算法已被证明可用于姿势识别和提高瑜伽姿势的准确性。在当今的现代时代,ML和DL技术已被证明对于对象发现任务很重要。我们可以有效地使用该模型来识别不同重要的身体部位并实时估算用户姿势。为实现这一目标,我们用不同的瑜伽姿势图像训练模型。当图像被送入姿势估计模型时,它通过执行特征提取来分析图像并识别身体部位,表明其在屏幕上的位置。此外,该模型为每个检测提供了一个置信值,表明给定图像正确识别为输入的可能性。我们使用了不同的瑜伽姿势,例如骆驼姿势,下dog姿势,女神姿势,木板姿势,树姿势,Warrior2姿势来训练该模型,这使其在识别各种姿势方面非常准确。这项研究的主要目标是使用此检测技术来帮助人们确定他们正在执行的瑜伽姿势。此外,我们还解决了当前系统的缺点,例如它们的准确性差,高处理成本以及对各种身体形状和瑜伽样式的适用性限制。在本文中,我们提出了一种基于卷积神经网络(CNN)的方法来创建瑜伽立场检测系统。建议的技术旨在通过提供更精确,有效和广泛适用的解决方案来识别瑜伽姿势和产生反馈的方法,以改善当前系统的缺点。总体而言,基于技术的工具在我们的研究中的应用可能有助于设计更多定制和成功的瑜伽实践。我们的发现可以帮助构建虚拟助手和智能瑜伽垫等应用程序,从而改善瑜伽实践的可访问性和个性化。
摘要将多转飞机(MRAV)集成到5G和6G网络中,增强了覆盖范围,连通性和拥堵管理。这促进了通信意识到的机器人技术,探索了机器人技术与通信之间的相互作用,但也使MRAV易受恶意攻击(例如干扰)。对抗这些攻击的一种传统措施是在MRAV上使用横梁来应用物理层安全技术。在本文中,我们探讨了姿势优化,作为反对对MRAV攻击的替代方法。该技术旨在全向MRAVS,它们是能够独立控制其位置和方向的无人机,而不是无法独立控制其位置的更常见的低估MRAV。在本文中,我们考虑了一个全向MRAV作为合法地面节点的基站(BS),受到恶意干扰的攻击。我们优化了MRAV姿势(即位置和方向),以最大程度地比所有合法节点上的最小信噪比加上噪声比(SINR)。
背景:医学生经常采取不良姿势,例如弯腰驼背,可能会影响健康。心率变异性(HRV)是自主神经系统功能的指标,与心血管健康相关。目的和目标:本研究的目的是比较医学生在三种姿势下的 HRV 参数:端坐、轻松姿势(盘腿)和弯腰驼背(低头和弯肩)。材料和方法:一项比较横断面研究招募了 26 名男医学生。要求参与者保持每个姿势 5 分钟,同时使用 Polar V800 记录 HRV。使用 Friedman 检验和事后检验进行成对比较,分析了不同姿势之间的时域和频域参数。P<0.05 被认为具有显著性。数据以中位数四分位距表示。结果:不同姿势之间的 HRV 参数存在显著差异。轻松姿势下连续 RR 间隔差的均方根中值(48.28 毫秒 vs. 35.35 毫秒)和 pNN50% 中值(24.40% vs. 13.62%)明显高于懒散姿势。频域分析显示,轻松姿势下高频 (HF) 功率中值(626.56 毫秒² vs. 378.15 毫秒²)和 HF 标准化单位(33.78 vs. 22.55)明显高于懒散姿势。轻松姿势下低频 (LF)/HF 比率较低(1.96 vs. 3.43)和 LF 标准化单位较低(66.18 vs. 77.30)。虽然统计上并不显著,但与懒散姿势相比,直立坐姿下 HRV 的副交感神经指标更高。结论:对于医学生来说,采取轻松的姿势(盘腿而坐)似乎可以增强 HRV,从而增加副交感神经活动,而采取懒散的姿势则会降低 HRV。
摘要。机器人远程操作是执行复杂任务的重要工具,这些任务需要超出最先进算法能力的灵活性。现有的远程操作方法通常对人类操作员来说不直观,或者需要特殊的传感器和设备,这使得它们在许多情况下成本低且不切实际。在本文中,我们提出了一种依赖单目相机图像的机械臂远程操作框架。所提出的框架首先使用轻量级神经网络来估计人类操作员的身体姿势并识别他们的手势。然后,一种高效的逆运动学算法找到所需的机械臂配置,实现模仿操作员手腕运动的末端执行器运动。我们的远程操作框架可以在普通笔记本电脑上使用网络摄像头和任何具有 ROS 接口的机械臂执行。我们在 Kinova Jaco 机械臂的实际实验中验证了它的性能,展示了在环境中抓取和移动物体的能力。