本文提出一种新的多传感器组合姿态确定方法,可高精度测量高转速刚体飞行器的姿态。分析飞行器在飞行过程中所受的外力矩,在刚体绕质心旋转的运动方程基础上,通过理论推导,提出了一种基于多传感器组合姿态确定方法。该方法融合GPS、陀螺仪和磁力计测得的数据,采用改进的无迹卡尔曼滤波(UKF)算法进行滤波。首先,根据高转速飞行器的运动特点,对刚体绕质心运动方程作出适当的假设和简化近似。利用这些假设和近似,推导出欧拉姿态角与飞行路径角、弹道偏转角之间的约束方程,作为状态方程。其次,利用地磁场模型和三轴磁强计测量的地磁强度计算出含有误差的滚转角,并与陀螺仪获取的角速度信息进行融合,建立测量方程;最后在UKF预测阶段采用龙格-库塔法对状态方程进行离散化,提高预测精度。仿真结果表明,所提方法能有效确定高速飞行器的姿态信息,并能保证飞行器姿态的准确性。
TRAX2 将 PNI 的高灵敏度磁感应传感器与高稳定性 3 轴 MEMS 加速度计相结合,可在各种条件下提供准确的航向信息,并能够克服由局部磁场变化引起的误差。这可提供无漂移、高精度航向、俯仰和横滚以及长期静态精度。
摘要: - 手语动作的解释对于改善聋人和听力障碍者的交流可访问性至关重要。本研究提出了一个全面的计算框架,用于特征提取和长期记忆(LSTM)网络,以捕获跨手势序列的时间动态。CNN体系结构用于评估视觉输入,成功地识别和分类了对正确手势解释至关重要的手动形状,面部表情和身体姿势。通过添加LSTM,我们的方法有效地复制了手语的顺序性质,从而识别了先前运动影响的连续手势。我们使用众多创新策略来处理手语检测问题,例如签名样式,周围噪声以及实时处理的需求。多模式数据融合包含视觉,上下文和语言信息,以提高模型鲁棒性。旋转,缩放和时间变化被用作数据增强程序,以增加训练数据集并提高各种签名设置的模型适用性。混合CNN-LSTM体系结构通过超级参数调整,辍学正则化和批准化来增强,以减少过度拟合,同时保持出色。
根据给定序列预测人体运动是计算机视觉和机器学习中一项具有挑战性且至关重要的任务,它使机器能够有效地理解人类行为。精确预测人体姿势和运动轨迹对于各种应用都具有重要意义,包括自动驾驶、机器人技术和虚拟现实。本文提出了一种新方法来解决估计以 3D 姿势或 2D 轨迹表示的人体运动,以及使用 2D 图像和人体姿势/位置序列联合预测未来运动的相互关联的任务。我们提出了一种编码器-解码器架构,该架构利用具有自注意机制的 Transformer 网络,利用视觉上下文特征,结合 LSTM 来建模人体运动运动学。我们的方法在数量和质量上都比现有方法表现出持续显著的改进。在各种公共数据集上进行的大量实验,例如用于 3D 人体姿势估计的 GTA-IM 和 PROX,以及用于 2D 轨迹预测的 ETH 和 UCY 组合数据集,表明与当前最先进的方法相比,我们的方法大大减少了预测误差。
本手册提供的信息旨在供符合现行法规要求并有资格安装此设备的人员使用。如果需要更多信息,请联系:Mid-Continent Instruments and Avionics 收件人:客户服务部9400 E. 34 th St. N. Wichita, KS 67226 USA 电话 316-630-0101 传真 316-630-0723 www.mcico.com 我们欢迎您对本手册提出意见。尽管我们已尽一切努力确保手册中没有错误,但仍难免会有错误。报告特定问题时,请简要描述问题,并注明手册部件号、段落/图表/表格编号和页码。请将您的意见发送至:Mid-Continent Instruments and Avionics 收件人:客户服务部9400 E. 34 th St. N. Wichita, KS 67226 USA 电话 316-630-0101 传真 316-630-0723 ©Copyright 2012 Mid-Continent Instrument Co., Inc.
摘要 — 飞机检查的可靠性对飞行安全至关重要。飞机结构的持续适航性很大程度上取决于经过培训的检查人员对小缺陷的目视检测,这些检查任务昂贵、关键且耗时。为此,无人机 (UAV) 可用于自主检查,只要能够在绕目标飞行时定位目标并纠正位置即可。这项工作提出了一种解决方案,用于在近距离自主绕机身飞行以进行目视检查任务时检测飞机相对于无人机位置的姿态。该系统的工作原理是处理来自机载 RGB 相机的图像,将传入的帧与已知机身表面位置的自然地标数据库进行比较。该解决方案已在真实的无人机飞行场景中进行了测试,显示出其在高精度定位姿态方面的有效性。所提出方法的优势具有工业意义,因为我们消除了现有技术解决方案中存在的许多限制。索引词——视觉检查,自我定位,3D姿态,地标检测
第 4 章 姿态控制 ..................................................................................................................................................................................39 4.1 姿态误差....................................................................................................................................................................................................41 4.1.1 四元数姿态误差....................................................................................................................................................................................41 4.1.2 解算倾斜扭转....................................................................................................................................................41 .................................................................................................................................................................................43 4.1.3 解析欧拉角....................................................................................................................................................................................49 4.1.4 姿态误差对比....................................................................................................................................................................................................61 4.2 姿态控制....................................................................................................................................................................................................................................61 62 4.2.1 PID . ... . ...
摘要。构建了一种基于自然交互行为手势的微型旋翼飞行器控制方法。为了实现通过手势控制微型旋翼飞行器的飞行姿态,通过Leap Motion控制器获取手掌平放姿态数据,通过坐标系变换和姿态角变换将数据转换为不同坐标系之间的旋翼飞行器姿态控制命令,并通过无线传输模块与微型旋翼飞行器进行通信,搭建了微型旋翼飞行器控制系统,实现了对旋翼飞行器的上升、悬停、降落、俯仰等飞行动作的控制。在实际实验中,通过不同的手势实现了对微型旋翼飞行器的飞行姿态控制。通过手势控制微型旋翼飞行器更符合自然交互的特点,是人机交互的一种延伸。
摘要:面向太阳的姿态控制是大多数微纳卫星最重要的姿态控制方式之一,直接影响在轨能量获取,因此采用最简单的传感器和执行器以及最可靠的算法实现面向太阳的姿态控制具有重要意义。提出一种纯磁控制的面向太阳自旋稳定微纳卫星姿态控制方法,控制过程分为初始阻尼阶段、太阳对准阶段、自旋加速阶段和自旋稳定阶段4个阶段。所提方法考虑了轨道阴影区、太阳敏感器及太阳板偏置安装、太阳敏感器视场限制以及环境扰动力矩的影响。通过数值仿真评估了控制性能,仿真结果表明所提方法适用于搭载太阳敏感器和三轴磁力计作为姿态传感器、3个正交安装磁力矩器作为姿态执行器的卫星。所提出的方法适用于大多数地磁场能够提供足够姿态控制扭矩的地球轨道卫星。
摘要................................................................................................................................iii