密歇根州立大学预算和财务 - 附件 3 董事会执行行动摘要 ______________________________________________________
2023 年,全球新增可再生能源发电量达到创纪录的 507 吉瓦,同比增长 50%。国际能源署预测,2024 年至 2028 年间将新增 3,178 吉瓦。在印度,发电量预计到 2030 年将达到 500 吉瓦(高于 2024 财年末的 192 吉瓦),EPC 公司将从中受益。Sterling & Wilson 是一家纯粹的全球太阳能 EPC 和 O&M 服务提供商。我们预测,2025-27 财年所有市场的太阳能 EPC 订单量约为 4960 亿卢比。 RIL 计划到 2030 年建设 100 吉瓦的可再生能源容量(主要是太阳能光伏和电池储能),以实现净零目标,这可能在 26-31 财年创造约 1.1 万亿卢比的 EPC 机会,其中约 3,0000 亿卢比用于 S&W,约 240 亿卢比用于 O&M 服务。及时的融资和 RIL 股份出售支持了公司财务状况的显著改善,使其能够从全球太阳能容量的增加中受益(IEA 估计,24-28 财年为 2,317 吉瓦)。这将受到 2680 亿卢比的国内外订单的推动;来自信实工业的价值 935 亿卢比的太阳能光伏和储能新订单;以及来自尼日利亚的价值 15 亿美元(1343 亿卢比)的订单即将签署,有待最终条款谈判。RIL 的 RE 计划预计将提供一个多年的机会。 RIL 计划到 2030 年实现 100 吉瓦可再生能源发电能力的安装,力争到 2035 年实现净零排放目标。可再生能源发电能力将主要包括太阳能光伏和储能。这将带来 1.1 万亿卢比的总 EPC 机会,以及 240 亿卢比的 O&M 服务,以及 26-31 财年期间 3000 亿卢比的 S&W 外包工作(假设占 50%)。
铜染色阳性颗粒显然比没有脂肪变性的WD患者的脂肪变性患者更多。在用CUSO4处理的ARG778LEU HEPG2细胞中,脂肪变性的程度得到了增强,如甘油三酸酯升高(TG)和油红色O染色中的阳性颗粒所示。对CUSO4处理的响应,细胞活力和GPX4表达显着降低,但是,FER-1的给药逆转了细胞生存能力和包括GPX4,GSH,GSH,MDA和ROS在内的细胞生存力和铁凋亡标记的变化。erastin-2诱导促进了肝细胞脂肪变性,如TG和油红O染色阳性颗粒所表现出的,这可以受到FER-1处理的抑制。PPARα和FABP1作为脂肪变性的潜在调节剂进行筛选,该数据集包含来自ATP7B-小鼠的肝脏组织的数据。FN的施用导致了上调的PPARα,FabP1和GPX4表达,相反,GW处理导致这三种蛋白的表达下调。此外,FABP1RP的给药带来了FABP1和GPX4的升高,但没有PPARα。,与对照细胞中的FN和FABP1RP处理后,经过FN和FABP1RP处理后CUSO4处理的ARG778LEU HEPG2细胞的TG水平明显降低,但在GW处理后却显着升高。co-IP实验证实了这三种蛋白质之间的相互作用。最后,与没有脂肪变性的WD肝组织相比,WD患者的肝组织中GPX4,PPARα和FABP1的表达降低。
引言威尔逊疾病(WD)是由ATP7B基因中的致病变异引起的一种罕见的常染色体隐性代谢疾病,它编码了P型铜转运ATPase,并且主要在HEPATOCYTES中表达。ATP7B在铜代谢中起着至关重要的作用,为铜蛋白合成提供了铜,并将过量的铜释放到胆汁中。ATP7B功能的丧失会导致肝脏中的有毒铜沉积物,并且在较小程度上,在大脑,眼睛和肾脏中导致慢性肝炎和肝硬化,直到肝脏衰竭,并导致精神病和神经系统缺陷。当前的WD疗法基于螯合剂的去除和减少锌盐铜肠吸收的铜沉积物(1)。治疗在所有WD患者中均不有效,无反应者通常需要肝移植(2)。此外,遵守治疗通常是一个问题,尤其是在青少年中(3,4)。腺相关病毒(AAV)载体被认为是肝脏定向基因治疗的首选载体,并且正在迅速进入诊所(5)。使用AAV载体的经典基因替代方法已在成年ATP7B - / - 小鼠(6)中实现了疾病校正。然而,WD可以在年轻人中表现出来,而在生长肝脏中早期施用了伴有肝AAV载体可能会导致由于肝细胞增殖而导致转基因表达的逐渐丧失。此外,大多数WD患者在诊断时已经存在肝损伤(7),再生反应可能会进一步促进转基因稀释。此策略利用相反,基因组编辑会导致永久性基因组DNA修饰,如果发生增殖,则由子细胞遗传,从而避免转基因稀释。AAV介导的无启动子转基因在白蛋白(ALB)基因座中的靶向整合已被开发为一种安全有效的肝脏定向基因组编辑方法(8)。
8 月 16 日,杰克逊堡接待了一位特殊的来访者,美国国会议员乔·威尔逊和他的工作人员参观了驻地的几个地点。威尔逊在第 2 营第 39 步兵团(未来士兵预备课程)受到了准将的欢迎。Jason E. Kelly 将军和杰克逊堡高级领导团队的几名成员。在 FSPC,威尔逊有机会与几名从课程毕业并准备进入基础战斗训练的士兵交谈。在杰克逊堡副指挥官 Mark E. Huhtanen 上校的陪同下,威尔逊还参观了交战技能训练师和训练中士 Timothy Kay 士兵表现准备中心。
●J.R. Cronly-Dillon和G.W.佩里,1975年。在产后早期生活中大鼠视觉皮层中微管蛋白的合成与大开眼界有关。生理学杂志252,27-28。●J.R. Cronly-Dillon和G.W.佩里,1976年。小管蛋白合成在发展大鼠视觉皮层中。自然261,581-583。●J.R. Cronly-Dillon和G.W.佩里,1978年。微管蛋白合成在发展大鼠和小猫的脑皮质中。生理学杂志287,26-27。●G.W.Perry和J.R. Cronly-Dillon,1978年。微管蛋白合成。大脑研究142,374-378。 ●J.R. Cronly-Dillon和G.W. 佩里,1979年。 在连帽大鼠中视觉皮层发育的关键时期,视觉体验对微管蛋白合成的影响。 生理学杂志293,469-484。 ●T.R. Vidyasagar和G.W. 佩里,1979年。 改进的钨微电极。 大脑研究公告4,285-286。 ●G.W. Perry和D.L. 威尔逊,1980年。 周围神经损伤后蛋白质合成和轴突转运。 神经科学学会摘要6,94。 ●G.C. Stone,D.L。 Wilson和G.W. 佩里,1980年。 在二维凝胶上的放射性标记蛋白的定量:分析蛋白质合成和基因表达变化的方法的测试。 电泳'79,B.J。 Radola,编辑。大脑研究142,374-378。●J.R. Cronly-Dillon和G.W.佩里,1979年。在连帽大鼠中视觉皮层发育的关键时期,视觉体验对微管蛋白合成的影响。生理学杂志293,469-484。●T.R.Vidyasagar和G.W.佩里,1979年。改进的钨微电极。大脑研究公告4,285-286。●G.W.Perry和D.L. 威尔逊,1980年。 周围神经损伤后蛋白质合成和轴突转运。 神经科学学会摘要6,94。 ●G.C. Stone,D.L。 Wilson和G.W. 佩里,1980年。 在二维凝胶上的放射性标记蛋白的定量:分析蛋白质合成和基因表达变化的方法的测试。 电泳'79,B.J。 Radola,编辑。Perry和D.L.威尔逊,1980年。周围神经损伤后蛋白质合成和轴突转运。神经科学学会摘要6,94。●G.C.Stone,D.L。 Wilson和G.W. 佩里,1980年。 在二维凝胶上的放射性标记蛋白的定量:分析蛋白质合成和基因表达变化的方法的测试。 电泳'79,B.J。 Radola,编辑。Stone,D.L。Wilson和G.W. 佩里,1980年。 在二维凝胶上的放射性标记蛋白的定量:分析蛋白质合成和基因表达变化的方法的测试。 电泳'79,B.J。 Radola,编辑。Wilson和G.W.佩里,1980年。在二维凝胶上的放射性标记蛋白的定量:分析蛋白质合成和基因表达变化的方法的测试。电泳'79,B.J。Radola,编辑。Radola,编辑。de Gruyter and Co.柏林,第361-382页。●G.W.Perry和D.L. 威尔逊,1981年。 蛋白质合成和神经再生过程中的轴突转运。 神经化学杂志37,1203-1218。 ●G.W. Perry和D.L. 威尔逊,1981年。 比较青蛙和大鼠感觉神经元中快速运输的蛋白质。 神经科学学会摘要7,486。 ●B。Tedeschi,D.L。 Wilson,A。Zimmerman和G.W. 佩里,1981年。 轴突运输的蛋白是否是从坐骨神经释放出来的? 大脑研究211,175-178。 ●G.W. Perry和D.L. 威尔逊,1982年。 鉴定α和β小管蛋白亚基。 神经化学杂志38,1155-1159。 ●G.W. Perry,S.R。 Krayanek和D.L. 威尔逊,1983年。 蛋白质合成和背根再生过程中的快速轴突转运。 神经化学杂志40,1590-1598。 ●G.W. Perry和D.L. 威尔逊,1983年。 青蛙和大鼠中的多肽:快速运输和丰富的神经蛋白的进化变化。 神经化学杂志41,772-779。Perry和D.L.威尔逊,1981年。蛋白质合成和神经再生过程中的轴突转运。神经化学杂志37,1203-1218。●G.W.Perry和D.L. 威尔逊,1981年。 比较青蛙和大鼠感觉神经元中快速运输的蛋白质。 神经科学学会摘要7,486。 ●B。Tedeschi,D.L。 Wilson,A。Zimmerman和G.W. 佩里,1981年。 轴突运输的蛋白是否是从坐骨神经释放出来的? 大脑研究211,175-178。 ●G.W. Perry和D.L. 威尔逊,1982年。 鉴定α和β小管蛋白亚基。 神经化学杂志38,1155-1159。 ●G.W. Perry,S.R。 Krayanek和D.L. 威尔逊,1983年。 蛋白质合成和背根再生过程中的快速轴突转运。 神经化学杂志40,1590-1598。 ●G.W. Perry和D.L. 威尔逊,1983年。 青蛙和大鼠中的多肽:快速运输和丰富的神经蛋白的进化变化。 神经化学杂志41,772-779。Perry和D.L.威尔逊,1981年。比较青蛙和大鼠感觉神经元中快速运输的蛋白质。神经科学学会摘要7,486。●B。Tedeschi,D.L。Wilson,A。Zimmerman和G.W. 佩里,1981年。 轴突运输的蛋白是否是从坐骨神经释放出来的? 大脑研究211,175-178。 ●G.W. Perry和D.L. 威尔逊,1982年。 鉴定α和β小管蛋白亚基。 神经化学杂志38,1155-1159。 ●G.W. Perry,S.R。 Krayanek和D.L. 威尔逊,1983年。 蛋白质合成和背根再生过程中的快速轴突转运。 神经化学杂志40,1590-1598。 ●G.W. Perry和D.L. 威尔逊,1983年。 青蛙和大鼠中的多肽:快速运输和丰富的神经蛋白的进化变化。 神经化学杂志41,772-779。Wilson,A。Zimmerman和G.W.佩里,1981年。轴突运输的蛋白是否是从坐骨神经释放出来的?大脑研究211,175-178。 ●G.W. Perry和D.L. 威尔逊,1982年。 鉴定α和β小管蛋白亚基。 神经化学杂志38,1155-1159。 ●G.W. Perry,S.R。 Krayanek和D.L. 威尔逊,1983年。 蛋白质合成和背根再生过程中的快速轴突转运。 神经化学杂志40,1590-1598。 ●G.W. Perry和D.L. 威尔逊,1983年。 青蛙和大鼠中的多肽:快速运输和丰富的神经蛋白的进化变化。 神经化学杂志41,772-779。大脑研究211,175-178。●G.W.Perry和D.L. 威尔逊,1982年。 鉴定α和β小管蛋白亚基。 神经化学杂志38,1155-1159。 ●G.W. Perry,S.R。 Krayanek和D.L. 威尔逊,1983年。 蛋白质合成和背根再生过程中的快速轴突转运。 神经化学杂志40,1590-1598。 ●G.W. Perry和D.L. 威尔逊,1983年。 青蛙和大鼠中的多肽:快速运输和丰富的神经蛋白的进化变化。 神经化学杂志41,772-779。Perry和D.L.威尔逊,1982年。鉴定α和β小管蛋白亚基。神经化学杂志38,1155-1159。●G.W.Perry,S.R。 Krayanek和D.L. 威尔逊,1983年。 蛋白质合成和背根再生过程中的快速轴突转运。 神经化学杂志40,1590-1598。 ●G.W. Perry和D.L. 威尔逊,1983年。 青蛙和大鼠中的多肽:快速运输和丰富的神经蛋白的进化变化。 神经化学杂志41,772-779。Perry,S.R。Krayanek和D.L. 威尔逊,1983年。 蛋白质合成和背根再生过程中的快速轴突转运。 神经化学杂志40,1590-1598。 ●G.W. Perry和D.L. 威尔逊,1983年。 青蛙和大鼠中的多肽:快速运输和丰富的神经蛋白的进化变化。 神经化学杂志41,772-779。Krayanek和D.L.威尔逊,1983年。蛋白质合成和背根再生过程中的快速轴突转运。神经化学杂志40,1590-1598。●G.W.Perry和D.L. 威尔逊,1983年。 青蛙和大鼠中的多肽:快速运输和丰富的神经蛋白的进化变化。 神经化学杂志41,772-779。Perry和D.L.威尔逊,1983年。青蛙和大鼠中的多肽:快速运输和丰富的神经蛋白的进化变化。神经化学杂志41,772-779。
简介 威尔逊病 (WD) 是一种罕见的常染色体隐性铜代谢障碍,由 ATP7B 基因的致病变异引起,该基因编码 P 型铜转运 ATPase,主要在肝细胞中表达。ATP7B 在铜代谢中起着关键作用,为铜蛋白合成提供铜,并将过量的铜释放到胆汁中。ATP7B 功能丧失会导致肝脏中出现有毒的铜沉积,在较小程度上还会在脑、眼和肾脏中出现,从而导致慢性肝炎和肝硬化直至肝功能衰竭,以及精神和神经功能障碍。目前对 WD 的治疗方法是通过螯合剂去除铜沉积物和通过锌盐减少肠道对铜的吸收 (1)。这种疗法并非对所有 WD 患者都有效,对治疗无反应的患者通常需要肝移植 (2)。此外,治疗依从性往往是一个问题,尤其是在青少年中 (3, 4)。腺相关病毒 (AAV) 载体被认为是肝脏定向基因治疗的首选载体,并正在迅速进入临床 (5)。使用 AAV 载体的经典基因置换方法已在成年 Atp7b –/– 小鼠中实现了疾病纠正 (6)。然而,WD 可能在年轻个体中表现出来,在生长的肝脏中早期施用游离型 AAV 载体可能会导致由于肝细胞增殖而逐渐丧失转基因表达。此外,大多数 WD 患者在诊断时已经出现肝损伤 (7),再生反应可能会进一步促进转基因稀释。相反,基因组编辑会导致永久性的基因组 DNA 修饰,如果发生增殖,子细胞会继承这些修饰,从而避免转基因稀释。AAV 介导的白蛋白 (Alb) 基因座内无启动子转基因的靶向整合已被开发为一种安全有效的肝脏定向基因组编辑方法 (8)。该策略利用
罗格斯大学医学中心转化免疫学和传染病研究所所长、玛丽·柯伦·威尔逊和约瑟夫·张伯伦·威尔逊教授大卫·托普汉姆博士表示,研究人员表示,他们相信接种冠状病毒疫苗的人会比大多数具有天然免疫力的人受到更好的保护。
位于里约热内卢北部,阿萨港是拉丁美洲领先的深水工业港口设施。自2014年以来,它由Porto do doaçupoperações管理,这是由EIG控制的PrumoLogística之间的合作,以及Antwerp-Bruges International的港口。它由22家公认的公司组成,包括客户和合作伙伴,其中一些是世界一流的公司。随着既定和开发采矿和石油和天然气活动,Açu计划加速工业化,重点是低碳项目。它被认为是巴西的能量过渡港。