摘要:作为一种高度有前途的技术,飞行的临时网络代表了无人驾驶汽车(无人机)的自组织网络,引起了对环境监测,灾害管理,精密农业,监测和军事行动的多种应用的关注。但是,这些网络面临着各种安全威胁的挑战,包括由于其在动态环境中的部署而导致的恶意节点检测。为了解决这个问题,我们在本文中使用遗传算法(ML-TIFGA)提出了一种改进的新型安全解决方案,基于机器学习的威胁识别。研究包括使用基本遗传算法检测异常行为节点,并通过使用信誉系统动态地适应不断变化的网络条件。为了增强我们的安全解决方案ml-tifga,我们评估了两个关键因素:合作和可信度,它们在我们的遗传人群中充当飞行节点染色体内的遗传元素。此外,还合并了一种机制来重新配置信任,并在考虑过去的行为监控时通过更新的加权声誉系统动态提取威胁的挑战。使用NSL-KDD数据集中的实际样品值发现了实验结果中的显着改进,这产生了显着的99.829%的分类精度。此外,培训的威胁识别率达到98.36%,测试样品的识别率达到98.86%,通过ML-TIFGA的网络可靠性增长了99.3%。在针对最新方法的基准测试时,诸如延迟,吞吐量和数据输送率之类的绩效指标分别显示出24.65%,29.16%和31.73%的明显增强。