心律失常心脏死亡(SCD)是心肌梗塞(MI)后死亡率的重要原因。兔子具有与人类相似的心脏电生理学,因此是研究MI心律失常后的重要小动物模型。既定的手术冠状动脉结扎方法导致了胸膜粘连,从而阻碍了心外膜电生理学研究。粘附不存在,这也与手术发病率降低有关,因此代表了该方法的明确表现。先前已经在大兔子(3.5 - 5.5 kg)中描述了经皮。在这里,我们描述了一种新型的经皮Mi诱导方法,以较小的兔子(2.5 - 3.5 kg)在商业上很容易获得。新西兰白兔(N¼51名男性,3.1±0.3 kg)使用ISO叶片(1.5 - 3%)麻醉,并接受了涉及微无压尖端部署(1.5 fr,5 mm)的经皮MI手术(1.5 mm),冠状连接手术或shamshamshams手术。心电图(ECG)记录用于确定冠状动脉闭塞的限制。血液样本(1和24 h)用于心脏肌钙蛋白I(CTNI)水平。的射血分数(EF)在6 - 8 wk时测量。然后将兔子安乐死(安乐死)和心脏加工以进行磁共振成像和组织学。两组的死亡率相似。疤痕量,CTNI和EF在两个MI组之间都是相似的,并且与各自的假对照截然不同。因此,在兔子(2.5 - 3.5千克)中,微导管尖端部署的特性冠状动脉闭塞是可行的,并且产生具有类似炭的MI与手术结扎相似的MI,并且具有较低的程序性创伤,并且没有表达粘附。
半导体表面上的原子单层代表了二维极限的新兴功能量子材料 - 从超导体和莫特绝缘体到铁电和量子旋转厅绝缘子的范围。indenene是iDenene的iDenene,含量约为120 MeV的im依的三角形单层是一种量子自旋霍尔绝缘子,其微米尺度的SIC上的显式外延生长(0001)使其在技术上具有相关性。然而,它对室温旋转的适合性受到空气中拓扑特征的不稳定的挑战。必须制定一种在现场加工和装置制造过程中保护indenene拓扑性质的策略。在这里,我们表明,将泛烯烯酮插入到外延石墨烯中,可以有效地保护氧化环境,同时保留完整的拓扑特征。我们的方法开放了一个现有实验机会的丰富领域,启动单层量子旋转厅绝缘子,以实现逼真的设备制造并访问拓扑保护的边缘通道。
对电子束粉末床熔合 (PBF-EB) 和激光粉末床熔合 (PBF-LB) Inconel 718 的疲劳裂纹扩展行为进行了比较研究。PBF-EB Inconel 718 的裂纹遵循穿晶路径,扩展速度更快,而 PBF-LB 的裂纹遵循沿晶和穿晶路径的组合,其扩展速度较慢,与锻造对应物相当。PBF-EB Inconel 718 中的主疲劳裂纹在微观尺度上呈现锯齿状路径,由于加工硬化率非常低,裂纹表面附近有密集的滑移痕迹。基于裂纹尖端场的数字图像相关 (DIC) 分析,可以使用应变能密度标准成功预测 PBF-EB Inconel 718 中的疲劳裂纹锯齿路径,该标准规定裂纹扩展遵循从裂纹尖端到弹塑性边界的最小距离方向。对于 PBF-LB Inconel 718,主要的疲劳裂纹在低 Δ K 时是直的,但在中和高 Δ K 范围内发生严重偏转。初始晶间裂纹和主裂纹路径偏转之间存在明显的相关性。这表明,一旦裂纹尖端周围塑性区的累积损伤达到临界值,晶间裂纹就会形成疲劳裂纹的新前沿,导致主裂纹路径偏转。基于DIC的裂纹尖端场分析得出的弹塑性断裂力学参数rp和ΔCTOD可以定性预测PBF-LB Inconel 718的较低裂纹扩展速率。
将AAV封装到蛋白保险库纳米颗粒中,是基因治疗中和中和抗体问题的新颖解决方案,洛根·塔拉什(Logan Thrasher Collins),1,2 Wandy Beatty,3 Buhle Moyo,4 Michele Alves-Bezerra,5 Ayrea Hurley,5 Ayrea Hurley,5 Qing Lou,6,7 Z. Hong Z. Hong Zhong Zhou,6,8 selfan selfan selfan selfan self ba,4.8 self ba,4.8 self ba,88 self lag,4,8 s selfor,4,8; Ponnazhagan,10 Randall McNally,伦纳德·罗马11号,6,11,12 David T. Curiel 2,* 1华盛顿大学生物医学工程系的华盛顿大学; 2圣路易斯辐射肿瘤学系的华盛顿大学; 3圣路易斯分子微生物学系的华盛顿大学; 4赖斯大学生物工程系; 5贝勒医学院分子生理与生物物理学系; 6加州纳米系统研究所; 7加利福尼亚大学洛杉矶大学微生物学,免疫学和分子遗传学系; 8加州大学洛杉矶材料科学与工程系; 9贝勒医学院综合生理学系,阿拉巴马大学10号伯明翰病理学系,11级金库制药,加利福尼亚大学洛杉矶分校12号洛杉矶分校生物化学系 *通讯作者。摘要:尽管腺相关病毒(AAV)作为基因疗法的分娩方式取得了巨大的成功,但它仍然遭受了人类种群中和中和抗体的高流行,这限制了可以接受潜在挽救生命的治疗方法。在这方面,AAV疗法通常也必须作为单剂量给药,因为接受该病毒的患者中和抗体会产生。规避这些问题的策略仍然有限。作为一种新颖的解决方案,我们采用了spytag-spycatcher分子胶技术来促进重组蛋白库纳米颗粒内部的AAV包装。保管库是由哺乳动物细胞产生的内源性蛋白质细胞器,因此它们被免疫系统识别为自我。因此,它们可以保护包装的分子免于中和抗体。保险库以前已被用来将药物和蛋白质输送到细胞中,但我们的研究代表了任何人首次在保管库中包装整个病毒。我们表明,我们的Vaultaav(VAAV)输送车在存在抗AAV中和血清的情况下会导致细胞。vaav被定位为一个新的基因治疗递送平台,具有克服中和抗体问题的潜力,甚至允许多种剂量给药,从而扩大了AAV治疗的范围。引言与腺相关病毒(AAV)是治疗基因递送最成功的车辆之一。在美国市场上提供了几种AAV基因疗法,包括卢克斯特纳,佐尔根斯玛,hemgenix,levidys和roctavian。正在进行1,2次AAV临床试验,3个商业参与者正在研究工程AAV的新型方法以提高功效。1,3,4尽管具有势头和强大的临床特征,但由于对载体的不良免疫学反应,AAV基因治疗领域的进展却放慢了。3,5,6大约30-60%的人口已经具有针对大多数或所有AAV血清型的抗体。3,5,6大约30-60%的人口已经具有针对大多数或所有AAV血清型的抗体。7,8这会触发免疫毒性并排除临床功效,使此类患者没有资格进行治疗。寻找规避中和抗体的方法是AAV基因治疗领域的核心挑战。
抽象的亲脂蛋白是一种必不可少的,高度表达的脂质转运蛋白,分泌并在昆虫血淋巴中循环。我们劫持了肛门coluzzii脂肪素基因,使其共表达了抗体2A10的单链版本,该版本结合了疟原虫疟原虫恶性疟原虫的孢子岩。所产生的转基因蚊子表明,将表达恶性疟原虫的berghei传输的能力明显降低,向小鼠表达了恶性疟原虫的p. p. p. p. purciparum purciparum purciparum purcorozoite蛋白。为了迫使这种抗菌转基因在蚊子种群中的传播,我们设计并测试了几种基于CRISPR/CAS9的基因驱动器。其中之一安装在促寄生虫基因saglin中,并裂解野生型脂素蛋白,从而导致抗癌化的修饰的脂蛋白版本与Saglin Drive一起替换野生型和搭便车。尽管产生了抗驱动器等位基因并在其GRNA编码的多重阵列中显示不稳定,但基于Saglin的基因驱动器在笼中的蚊子种群中达到了高水平,并有效地促进了抗菌性脂蛋白:: sc2a10等位基因的同时扩散。这种组合有望通过两种不同的机制减少寄生虫的传播。这项工作有助于设计新型策略,以在蚊子中传播抗疟疾转基因,并说明建立种群修饰基因驱动器时遇到的一些预期和意外的结果。
通过谱系可塑性和发散的克隆进化(3,5-7)。CRPC-NE患者通常通过类似于小细胞肺癌(SCLC)的化学疗法方案进行积极治疗,并且还在进行几项CRPC-NE指导的临床试验。当前CRPC-NE的诊断仍然存在,因为需要转移活检以及室内肿瘤异质性。浆细胞-FRE-FREDNA(CFDNA)的DNA测序是一种无创的工具,可检测CER中的体细胞改变(8)。但是,与CRPC-Adeno相比,癌症特异性突变或拷贝数的变化仅在CRPC-NE中适度富集(3,9)。相反,我们和其他人观察到与CRPC-NE相关的广泛的DNA甲基化变化(3,10),并且可以在CFDNA中检测到这种变化(11,12)。DNA甲基化主要是在CpG二核苷酸上进行的,并且与广泛的生物学过程有关,包括调节基因的表达,细胞命运和基因组稳定性(13)。此外,DNA甲基化是高度组织特异性的,并提供了强大的信号来对原始组织进行反v,从而允许增强循环中低癌部分的检测(16、17),并已成功地应用于早期检测和监测(18,19)。如前所述,可以用甲硫酸盐测序来测量基础分辨率下的DNA甲基化,该测序为每种覆盖的CpG提供了一小部分甲基化的胞质的β值的形式,范围为0(无甲基化)至1(完全甲基化)。低通序测序遭受低粒度,并以粗分辨率捕获所有区域。原则上,诸如全基因组Bisulfite CFDNA测序(WGB)之类的方法可以很好地了解患者的疾病状况,并具有最佳的甲基化含量信息。实际上,鉴于高深度全基因组测序的成本,WGB的低通型变种适用于大规模的临床研究。鉴于此上下文中的大多数CPG站点可能是非信息或高度冗余的,我们旨在将测序空间减少到最小设置
单向量子中继器通过量子纠错码抵消丢失和操作错误,可以确保量子网络中快速可靠的量子比特传输。至关重要的是,这种中继器的资源需求(例如,每个中继器节点的量子比特数和量子纠错操作的复杂性)必须保持在最低水平,以便在不久的将来实现。为此,我们提出了一种单向量子中继器,它使用代码连接以资源高效的方式针对通信信道中的丢失和操作错误率。具体来说,我们将树簇代码视为内部容错代码,与外部 5 量子比特代码连接,以防止泡利错误。采用基于标志的稳定器测量,我们表明,通过散布每个专门用于抑制丢失或操作错误的中继器节点,可以以最小的资源开销连接长达 10,000 公里的洲际距离。我们的工作证明了定制的纠错码如何显著降低长距离量子通信的实验要求。
里德堡偶极子阻塞已成为诱导中性原子量子比特之间纠缠的标准机制。在这些协议中,将量子比特态耦合到里德堡态的激光场被调制以实现纠缠门。在这里,我们提出了一种通过里德堡修饰和微波场驱动的自旋翻转阻塞来实现纠缠门的替代协议 [ 1 ]。我们考虑在铯的时钟状态中编码的量子比特的具体示例。辅助超精细态经过光学修饰,使其获得部分里德堡特性。因此,它充当代理里德堡态,具有充当阻塞强度的非线性光移。可以调制将量子比特态耦合到该修饰辅助态的微波频率场以实现纠缠门。为光学区域设计的逻辑门协议可以导入到这种微波区域,对此实验控制方法更为稳健。我们表明,与通常用于里德堡实验的强偶极子阻塞模式不同,采用中等自旋翻转阻塞模式可使门运行速度更快,里德堡衰变更小。我们研究了可以产生高保真度双量子比特纠缠门的各种操作模式,并描述了它们的分析行为。除了微波控制固有的稳健性之外,我们还可以设计这些门,使其对激光振幅和频率噪声更具稳健性,但代价是里德堡衰变略有增加。
固定氮的蓝细菌来自怀旧的阶层,能够与多种植物物种建立共生关系。它们是混杂的共生体,因为相同的蓝细菌菌株能够与不同植物物种形成共生生物生物固定关系。本综述将重点关注内生细菌和附生的不同类型的细菌 - 植物关联,并从结构观点提供见解,以及我们当前对共生串扰中涉及机制的理解。在所有这些共生中,植物的好处是明显的;它从氰基固定氮和其他生物活性化合物(例如植物激素,多糖,铁载体或维生素)中获得,从而提高了植物的生长和生产力。此外,越来越多地使用不同的蓝细菌物种作为生物固定剂,用于生物氮固定,以改善土壤的生育能力和作物生产,从而提供了一种环保,替代和可持续的方法,以降低对合成化肥的过度依赖合成化肥的过度依赖。
摘要:本文提供了环氧树脂的简短概述,包括它们的多样性,变体,化学修饰,固化过程和有趣的电气性能。环氧树脂以其多功能属性而珍视,是整个行业的基本材料。在介电强度的范围内,环氧树脂在电绝缘层中起着至关重要的作用。本文讨论了有关介电击穿的机制,增强介电强度的策略以及各种填充剂和添加剂对绝缘性能的影响。通过探索最近的研究和进步,本文深入研究了环氧性特性,亚种和变体的阵列,它们的化学适应性以及固化的复杂性。对电阻和电导率的检查,重点是其频率依赖性行为,构成了讨论的关键方面。通过阐明这些维度,这篇评论提供了对环氧树脂及其在塑造现代材料科学中的作用的简洁而整体的理解。