多模式的大型语言模型(LLMS)在大量数据集中受过培训的多模型在许多情况下变得越来越有能力。但是,此类模型的capabilies通常在狭窄的任务中进行评估,就像标准的机器学习模型接受了针对特定目标的训练一样。,我们通过将最新的LLM代理通过其步调进行一般任务来解决不同的策略,以解决三个受欢迎的游戏 - Wordle,Face Quiz和Flashback。这些游戏很容易被人类解决,但他们要求一定程度的自我意识和更高层次的能力来实验,从错误中学习并计划。我们发现LLM代理在这些一般任务中表现出不同的性能。他们缺乏从错误和自我纠正能力中学习的意识。llms在最复杂的认知子任务中的性能可能不是其在现实世界环境中部署的限制因素。相反,重要的是要通过包含多个齿轮任务的一般测试来评估吸气LLM的功能,从而使它们能够解决完整的现实世界应用。
代码提供了一种一般的句法结构来构建复杂的程序并与代码解释器配对时执行精确的计算 - 我们假设语言模型(LMS)可以利用代码编写来提高思想链推理不仅用于逻辑和算术任务(Chen等人 ,2022; Nye等。 ,2021;奥斯汀等。 ,2021),但也适用于语义(尤其是两者的混合物)。 例如,考虑提示LM编写代码,以计算其在论文中检测到的讽刺的次数:LM可能难以编写“ destect_sarcasm(string)”可以由解释器执行的实现(处理边缘案例将是不可公司执行的)。 但是,如果LMS不仅编写代码,还可以通过生成“ destect_sarcasm(string)”的预期输出来选择性地“仿真”解释器,那么LMS仍可能会产生有效的解决方案。 在这项工作中,我们提出了代码链(COC),这是一种简单而有效的扩展,可改善LM代码驱动的推理。 关键想法是鼓励LMS在程序中格式化语义子任务作为灵活的伪代码,而解释器可以明确地捕获未定义的行为并用LM进行模拟(作为“ LMULATOR”)。 实验表明,代码链的表现优于各种基准的思想链和其他基线。在大基础上,代码链可实现84%,比思想链增长了12%。 简而言之,COC扩大了LMS可以通过“代码思考”来回答的推理问题的范围。,2022; Nye等。,2021;奥斯汀等。,2021),但也适用于语义(尤其是两者的混合物)。例如,考虑提示LM编写代码,以计算其在论文中检测到的讽刺的次数:LM可能难以编写“ destect_sarcasm(string)”可以由解释器执行的实现(处理边缘案例将是不可公司执行的)。但是,如果LMS不仅编写代码,还可以通过生成“ destect_sarcasm(string)”的预期输出来选择性地“仿真”解释器,那么LMS仍可能会产生有效的解决方案。在这项工作中,我们提出了代码链(COC),这是一种简单而有效的扩展,可改善LM代码驱动的推理。关键想法是鼓励LMS在程序中格式化语义子任务作为灵活的伪代码,而解释器可以明确地捕获未定义的行为并用LM进行模拟(作为“ LMULATOR”)。实验表明,代码链的表现优于各种基准的思想链和其他基线。在大基础上,代码链可实现84%,比思想链增长了12%。简而言之,COC扩大了LMS可以通过“代码思考”来回答的推理问题的范围。
环境:环境保护不仅是法律,也是正确做法。这是一个持续的过程,从深思熟虑的规划开始。在训练和任务期间,始终注意保护环境的方法。这样做,您将为维持我们的训练资源做出贡献,同时保护人民和环境免受有害影响。请参阅当前的环境考虑手册和当前的 GTA 环境相关风险评估卡。安全:在训练环境中,领导者必须根据当前的风险管理原则进行风险评估。领导者将根据 TRADOC 安全官在规划和完成每项任务和子任务时完成当前的深思熟虑风险评估工作表,通过评估任务、敌人、地形和天气、部队和支援可用时间以及民事考虑因素 (METT-TC)。注意:在 MOPP 训练期间,领导者必须确保对人员进行监控,以防潜在的热伤害。在高温类别增加时,必须遵守当地政策和程序,以避免与高温相关的伤害。考虑 MOPP 工作/休息周期和水更换指南 IAW
环境:环境保护不仅是法律,也是正确做法。这是一个持续的过程,从深思熟虑的规划开始。在训练和任务期间,始终注意保护环境的方法。这样做,您将为维持我们的训练资源做出贡献,同时保护人民和环境免受有害影响。请参阅当前的环境考虑手册和当前的 GTA 环境相关风险评估卡。安全:在训练环境中,领导者必须根据当前的风险管理原则进行风险评估。领导者将根据 TRADOC 安全官在规划和完成每项任务和子任务时完成当前的深思熟虑风险评估工作表,评估任务、敌人、地形和天气、部队和支援可用时间以及民事考虑因素 (METT-TC)。注意:在 MOPP 训练期间,领导者必须确保对人员进行监控,以防潜在的热损伤。在高温类别增加时,必须遵守当地政策和程序,以避免与高温相关的伤害。考虑 MOPP 工作/休息周期和水更换指南 IAW 当前的 CBRN 原则。
环境:环境保护不仅是法律,也是正确做法。这是一个持续的过程,从深思熟虑的规划开始。在训练和任务期间,始终注意保护环境的方法。这样做,您将为维持我们的训练资源做出贡献,同时保护人民和环境免受有害影响。请参阅当前的环境考虑手册和当前的 GTA 环境相关风险评估卡。安全:在训练环境中,领导者必须根据当前的风险管理原则进行风险评估。领导者将根据 TRADOC 安全官在规划和完成每项任务和子任务时完成当前的深思熟虑风险评估工作表,评估任务、敌人、地形和天气、部队和支援可用时间以及民事考虑因素 (METT-TC)。注意:在 MOPP 训练期间,领导者必须确保对人员进行监控,以防潜在的热损伤。在高温类别增加时,必须遵守当地政策和程序,以避免与高温相关的伤害。考虑 MOPP 工作/休息周期和水更换指南 IAW 当前的 CBRN 原则。
环境:环境保护不仅是法律,也是正确做法。这是一个持续的过程,从深思熟虑的规划开始。在训练和任务期间,始终注意保护环境的方法。这样做,您将为维持我们的训练资源做出贡献,同时保护人民和环境免受有害影响。请参阅当前的环境考虑手册和当前的 GTA 环境相关风险评估卡。安全:在训练环境中,领导者必须根据当前的风险管理原则进行风险评估。领导者将根据 TRADOC 安全官在规划和完成每项任务和子任务时完成当前的深思熟虑风险评估工作表,评估任务、敌人、地形和天气、部队和支援可用时间以及民事考虑因素 (METT-TC)。注意:在 MOPP 训练期间,领导者必须确保对人员进行监控,以防潜在的热损伤。在高温类别增加时,必须遵守当地政策和程序,以避免与高温相关的伤害。考虑 MOPP 工作/休息周期和水更换指南 IAW 当前的 CBRN 原则。
环境:环境保护不仅是法律,也是正确做法。这是一个持续的过程,从深思熟虑的规划开始。在训练和任务期间,始终注意保护环境的方法。通过这样做,您将为维持我们的训练资源做出贡献,同时保护人们和环境免受有害影响。请参阅当前的环境考虑手册和当前的 GTA 环境相关风险评估卡。安全:在训练环境中,领导者必须根据当前的风险管理原则进行风险评估。领导者将根据 TRADOC 安全官在规划和完成每项任务和子任务期间完成当前的深思熟虑风险评估工作表,通过评估任务、敌人、地形和天气、部队和支援可用时间以及民事考虑因素 (METT-TC)。注意:在 MOPP 培训期间,领导者必须确保监控人员,以防潜在的热损伤。在高温等级增加时,必须遵守当地政策和程序,以避免与高温相关的伤害。考虑 MOPP 工作/休息周期和水更换指南 IAW 当前的 CBRN 原则。
环境:环境保护不仅是法律,也是正确做法。这是一个持续的过程,从深思熟虑的规划开始。在训练和任务期间,始终注意保护环境的方法。这样做,您将为维持我们的训练资源做出贡献,同时保护人民和环境免受有害影响。请参阅当前的环境考虑手册和当前的 GTA 环境相关风险评估卡。安全:在训练环境中,领导者必须根据当前的风险管理原则进行风险评估。领导者将根据 TRADOC 安全官在规划和完成每项任务和子任务时完成当前的深思熟虑风险评估工作表,评估任务、敌人、地形和天气、部队和支援可用时间以及民事考虑因素 (METT-TC)。注意:在 MOPP 训练期间,领导者必须确保对人员进行监控,以防潜在的热损伤。在高温类别增加时,必须遵守当地政策和程序,以避免与高温相关的伤害。考虑 MOPP 工作/休息周期和水更换指南 IAW 当前的 CBRN 原则。
环境:环境保护不仅是法律,也是正确做法。这是一个持续的过程,从深思熟虑的规划开始。在训练和任务期间,始终注意保护环境的方法。这样做,您将为维持我们的训练资源做出贡献,同时保护人民和环境免受有害影响。请参阅当前的环境考虑手册和当前的 GTA 环境相关风险评估卡。安全:在训练环境中,领导者必须根据当前的风险管理原则进行风险评估。领导者将根据 TRADOC 安全官在规划和完成每项任务和子任务时完成当前的深思熟虑风险评估工作表,评估任务、敌人、地形和天气、部队和支援可用时间以及民事考虑因素 (METT-TC)。注意:在 MOPP 训练期间,领导者必须确保对人员进行监控,以防潜在的热损伤。在高温类别增加时,必须遵守当地政策和程序,以避免与高温相关的伤害。考虑 MOPP 工作/休息周期和水更换指南 IAW 当前的 CBRN 原则。
即使在现代社会,也很难找到符合特定标准的建筑平面图。大多数情况下,在客户指定他对新家的设想后,建筑师会浏览他的档案,以找到符合这些标准的类似平面图。下一步,他会修改它们以满足进一步的限制。但是,这种手动搜索需要很长时间,即使它可能具有很高的准确率,但召回率却很低。为了能够自动搜索,必须扫描档案并自动分析。自动平面图分析是提取嵌入在图像中的有关建筑物结构的信息的任务。它由几个子任务组成,例如,从文档中分割文本和图形、检测墙壁和门,最后识别不同的房间。自动平面图分析是模式识别和机器学习领域正在进行的研究课题。为了解决这个问题,人们进行了几次不同目标的尝试:[1-3] 尝试从 2D 平面图重建 3D 模型,而 [4] 尝试提取房间及其连接。参考文献 [5、6] 侧重于对手绘和草图平面图的理解。最近,我们介绍了一种自动平面图分析方法 [7]。对 [ 7 ] 中的结果进行分析得出的结论是,房间检索