摘要 我们讨论量子位置验证 (QPV) 协议,其中验证者创建单量子比特状态并将其发送给证明者。众所周知,使用单量子比特状态的 QPV 协议对于共享少量纠缠量子比特的对手来说是不安全的。我们介绍了实际上安全的 QPV 协议:它们只需要每个验证者的单量子比特状态,但如果共享大量纠缠量子比特的对手采用基于远距传态的攻击,它们的安全性就会被破坏。这些协议是对已知 QPV 协议的修改,我们在其中包含一个经典的随机预言机,而不会改变验证者所需的量子资源量。我们提出了一种作弊策略,该策略要求对手之间共享一定数量的纠缠量子比特,该数量随着随机预言机的经典输入的大小呈指数增长。
变异量子本质量(VQE)是一种选择在近期基于栅极的量子计算机上的分子的电子结构概率的选择。但是,电路深度有望随问题大小而显着增长。增加的深度既可以降低结果的准确性又可以降低训练性。在这项工作中,我们提出了一种减少Ansatz电路深度的方法。我们的方法称为“ permvqe”,在VQE中添加了一个额外的优化循环,该循环排列了Qubits,以便求解量子的Hamiltonian,该量子hamiltonian最大程度地将相关性定位在基态。置换的选择基于相互信息,这是电子与/或旋转轨道中孔之间相互作用的量度。将强烈纠缠的旋转轨道编码为量子芯片上的近端矩形自然会减少准备基态所需的电路深度。对于代表性的分子系统,Lih,H 2,(H 2)2,H = 4,H + 3和N 2,我们证明,将纠缠的量子位放在接近近距离的情况下,导致较低的深度电路达到给定的特征性eigenvalue-eigenvalue-eigenvalue-eigenvalue-eigenvalue-eigenvector准确性。该方法是为任何量子连接性的硬件效果ANSATZ而设计的,并为线性和二维网格体系结构展示了示例。主要思想也可以应用于与其他VQE以外的其他ANSATZ以及各种量子算法模拟分子。,我们证明了Qubit置换的有益效果,以在线性量子标论连接架构上构建费米子 - 适应性衍生物组装的伪拖动Ansatz,并降低了几乎两倍的受控闸门数量。
1台法大学理学学院数学与统计系Box 11099,Taif 21944,沙特阿拉伯; sabotalb@tu.edu.sa(s.a.-k.); eiedkhalil@tu.edu.sa(e.m.k.) 2 2物理系,伊玛目穆罕默德·伊本·萨德伊斯兰大学(IMSIU),里亚德11432,沙特阿拉伯3,阿卜杜勒·萨拉姆·萨拉姆国际理论物理中心,strada costiera,strada costiera,11,34151 Miramare-trieste,Italieste,Italieste,Italieste,Miramare-Trieste 4埃及; asobada@yahoo.com 5数学系,教育学院,阿恩·沙姆斯大学,开罗11566,埃及; esraareda226@yahoo.com 6 Sharjah大学应用物理与天文学系,沙迦27272,阿拉伯联合酋长国; heleuch@sharjah.ac.ae 7应用科学与数学系艺术与科学学院,阿布扎比大学,阿布扎比,阿布扎比59911,阿拉伯联合酋长国8量子科学与工程学院,德克萨斯州A&M大学,美国大学,美国德克萨斯州大学站Box 11099,Taif 21944,沙特阿拉伯; sabotalb@tu.edu.sa(s.a.-k.); eiedkhalil@tu.edu.sa(e.m.k.)2 2物理系,伊玛目穆罕默德·伊本·萨德伊斯兰大学(IMSIU),里亚德11432,沙特阿拉伯3,阿卜杜勒·萨拉姆·萨拉姆国际理论物理中心,strada costiera,strada costiera,11,34151 Miramare-trieste,Italieste,Italieste,Italieste,Miramare-Trieste 4埃及; asobada@yahoo.com 5数学系,教育学院,阿恩·沙姆斯大学,开罗11566,埃及; esraareda226@yahoo.com 6 Sharjah大学应用物理与天文学系,沙迦27272,阿拉伯联合酋长国; heleuch@sharjah.ac.ae 7应用科学与数学系艺术与科学学院,阿布扎比大学,阿布扎比,阿布扎比59911,阿拉伯联合酋长国8量子科学与工程学院,德克萨斯州A&M大学,美国大学,美国德克萨斯州大学站2物理系,伊玛目穆罕默德·伊本·萨德伊斯兰大学(IMSIU),里亚德11432,沙特阿拉伯3,阿卜杜勒·萨拉姆·萨拉姆国际理论物理中心,strada costiera,strada costiera,11,34151 Miramare-trieste,Italieste,Italieste,Italieste,Miramare-Trieste 4埃及; asobada@yahoo.com 5数学系,教育学院,阿恩·沙姆斯大学,开罗11566,埃及; esraareda226@yahoo.com 6 Sharjah大学应用物理与天文学系,沙迦27272,阿拉伯联合酋长国; heleuch@sharjah.ac.ae 7应用科学与数学系艺术与科学学院,阿布扎比大学,阿布扎比,阿布扎比59911,阿拉伯联合酋长国8量子科学与工程学院,德克萨斯州A&M大学,美国大学,美国德克萨斯州大学站
5 乘积空间和 2 个量子比特 15 5.1 纠缠. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 5.4 受控非门 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... 23 5.10 密集编码。通过发送一个量子比特并共享一个贝尔对来发送两个经典比特. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
相干电子位移是处理量子信息的一种传统策略,因为它能够将原子网络中的不同位置互连。处理的效率依赖于对机制的精确控制,而这种机制尚未建立。在这里,我们从理论上展示了一种新方法,即利用阿秒单周期脉冲,在比电子波包动态扭曲更快的时间尺度上驱动电子位移。这些脉冲的特征依赖于向电子传递巨大的动量,导致其沿单向路径位移。通过揭示编码量子叠加态的位移波包的时空性质,说明了这一场景。我们绘制出相关的相位信息,并从原点远距离检索它。此外,我们表明,将一系列这样的脉冲应用于离子链,能够以阿秒为单位控制电子波包在相邻位置之间来回相干运动的方向性。扩展到双电子自旋态证明了这些脉冲的多功能性。我们的研究结果为使用阿秒单周期脉冲对量子态进行高级控制建立了一条有希望的途径,为超快速处理量子信息和成像铺平了道路。
量子计算有一种不同的范式,其中算法是通过构造汉密尔顿量来设计的。系统最初处于易于准备的量子态,量子计算机使用设计的汉密尔顿量演化量子态。它最终到达一个编码问题解的量子态。汉密尔顿方法可以利用物理学家在几十年的研究中培养出来的量子力学直觉。1998 年,Farhi 和 Gutmann 提出了用于量子搜索的汉密尔顿量,[ 4 ] 2000 年提出了一种通用的量子绝热算法。[ 5 ] 在绝热算法中,量子计算机遵循时间相关汉密尔顿量的基态。已经证明,每个量子电路算法都可以转换成量子绝热算法,其时间复杂度完全相同。 [ 6 , 7 ] 独立集问题的量子汉密尔顿算法与其他已知量子算法和分类相比具有一些优势。
本论文研究基于近端 InAs/Al 纳米线的超导量子比特。这些量子比特由半导体约瑟夫森结组成,并呈现了 transmon 量子比特的门可调导数。除了门控特性之外,这个新量子比特(gatemon)还根据操作方式表现出完全不同的特性,这是本论文的主要重点。首先,系统地研究了 gatemon 的非谐性。在这里,我们观察到与传统 transmon 结果的偏差。为了解释这一点,我们推导出一个简单的模型,该模型提供了有关半导体约瑟夫森结传输特性的信息。最后,我们发现该结主要由 1-3 个传导通道组成,其中至少一个通道的传输概率达到大于 0.9 的某些门电压,这与描述传统 transmon 结的正弦能量相位关系形成鲜明对比。接下来,我们介绍了一种新的门控设计,其中半导体区域作为场效应晶体管运行,以允许通过门控设备进行传输,而无需引入新的主导弛豫源。此外,我们展示了传输和过渡电路量子电动力学量子比特测量之间的明显相关性。在这种几何结构中,对于某些栅极电压,我们在传输和量子比特测量中都观察到量子比特谱中的共振特征。在共振过程中,我们仔细绘制了电荷弥散图,在共振时,电荷弥散显示出明显抑制的数量级,超出了传统的预期。我们通过几乎完美传输的传导通道来解释这一点,该通道重新规范了超导岛的电荷。这与开发的共振隧穿模型在数量上一致,其中大传输是通过具有近乎对称的隧道屏障的共振水平实现的。最后,我们展示了与大磁场和破坏性 Little-Parks 机制中的操作的兼容性。当我们进入振荡量子比特谱的第一叶时,我们观察到出现了额外的相干能量跃迁。我们将其解释为安德烈夫态之间的跃迁,由于与 Little-Parks 效应相关的相位扭曲,安德烈夫态在约瑟夫森结上经历了路径相关的相位差。这些观察结果与数值结模型定性一致。