v3 具有全面的测试程序:台式和测试光束、辐照、NASA 有效载荷任务(A-STEP)的四芯片读数、与 ePIC 的 Pb/SciFi 集成(研发研究和测试文章生产)
EIC 项目由布鲁克海文国家实验室和托马斯·杰斐逊国家加速器设施联合管理。它已通过了能源部五个“关键决策”(CD) 里程碑中的前两个,目前处于设计阶段 ()。保持这一进度对于吸引和留住建设和运营这种最先进设施所需的高技能劳动力至关重要,并为建筑工人、设备制造商和材料供应商、技术人员、工程师、科学家和早期职业专业人士提供额外的就业机会,以及为当地、州和国家企业以及少数族裔和女性拥有的企业提供经济机会。预计建设将于 2024 年左右开始,运营将于 2030 年代初开始,随后将产生 20 多年的科学影响以及当今尚不存在的创新和改进机会。
C. Allaire 60·R。修订22·E. -C。关联3·M。Baland33·M。黄油28·I. Chatagnon 27·E.Cisbani 37·E.W。Cline 46·S. S. Dash 23·C. Dean 31·W. Deconinck 54·A. Deshpand 3.6·M 27,64·M.手指10·M。FingerJr. 10·E。 J. Huang 3·A.Jalotra 53·D.D.Jayakodige 21,27·B。Joo39·M。Junaid56·N. Callant 62·P.Karande 30·B.Kriesten·R.R.Elayavalli 61·Li 41·Li 41·Li 41·Li 39·F. Liu 39·F. Liu 39·F. Liu 39·F. liuti 58·G.Matusek 15·M。Mceneney15·D.McSpadden 27·T. Menzo 51·T.Miceli 17·V.Mikuni 65·R.Montgomery·B.Nashman 16·J。海峡16·D.Richford 2·B。J。Roy 38·D.Roy 45·A.Saini 17·N·N·萨莫27·T.Satogata 27.40·G·S·斯伯利尼(G. Sborlini) Syodmok 26·J。Stevens64·P。Sone64·L。Suarez64·K。Suresh56.64·A. -N.tawfik 19·F。ToralesAcosta 29·N. Tran 17·R。Trotta47·F. Jt。 WU 54·N。Zachari59·P。Zurita
摘要 利用拉曼光谱、差示扫描量热法、温度调制差示扫描量热法、介电光谱和流变学研究了将液体电解质限制在聚合物基质中的影响。聚合物基质由热固化乙氧基化双酚 A 二甲基丙烯酸酯获得,而液体电解质由基于乙基咪唑阳离子 [C 2 HIm] 和双(三氟甲烷磺酰基)酰亚胺 [TFSI] 阴离子的质子离子液体组成,掺杂有 LiTFSI 盐。我们报告称,受限液相表现出以下特征:(i)结晶度明显降低;(ii)弛豫时间分布更宽;(iii)介电强度降低;(iv)在液体到玻璃化转变温度 (T g ) 下协同长度尺度降低;和 (v)局部 T g 相关离子动力学加速。后者表明两个纳米相之间的界面相互作用较弱,而几何限制效应较强,这决定了离子动力学和耦合的结构弛豫,从而使 T g 降低约 4 K。我们还发现,在室温下,结构电解质的离子电导率达到 0.13 mS/cm,比相应的本体电解质低十倍。三种移动离子(Im +、TFSI - 和 Li +)对测量的离子电导率有贡献,从而隐性降低了 Li + 的迁移数。此外,我们报告称,所研究的固体聚合物电解质表现出将机械载荷转移到结构电池中的碳纤维所需的剪切模量。基于这些发现,我们得出结论,优化的
Elaine Petro 教授 康奈尔大学 分子离子束和束表面相互作用的多尺度建模 电喷雾离子源是卫星推进、生化分析和各种表面处理行业领域的使能技术。这些应用推动了对扩展离子束的物理和粒子碰撞的化学的更深入了解。电喷雾离子羽流对最先进的等离子体建模技术提出了挑战,因为关键过程发生的长度和时间尺度范围很广(即纳米级发射点和厘米级操作体积)。伴随着这些空间梯度的是离子和中性群体中的大密度和速度梯度。此外,电喷雾羽流是具有非麦克斯韦分布的非中性等离子体。我们介绍了最先进的分子离子羽流动力学和化学数值模型,这些模型对于探索设计变量、了解操作条件和提高性能必不可少。除了卫星推进中的应用外,我们还将讨论在其他相关领域利用这些离子源的机会。
摘要:在过去几年中,我们每天处理的图像的大小和数量以及我们每天处理的数据量迅速增长。量子计算机承诺将更有效地处理该数据,因为经典图像可以存储在Quantum状态中。量子计算机模拟器上的实验证明了这种诺言是正确的。当前,在真实量子计算机上运行相同的算法通常太容易出错,无法使用任何实际用途。我们探讨了实际量子计算机上图像处理的当前可能性。我们重新设计了一种常用的量子图像编码技术,以降低其对错误的敏感性。我们通过实验表明,要在量子计算机上编码的图像的当前尺寸限制,随后以5%的误差为2×2像素。避免这种限制的一种方法是将经典过滤的想法与仅在本地运行的量子算法相结合。我们使用边缘检测的应用示例来显示此策略的实用性。我们的混合过滤方案的量子部分是人工神经元,在实际量子计算机上也很好地工作。
目前,人们致力于实现分子的精密光谱和量子态控制。与原子相比,分子的种类要多得多,它们具有更丰富的结构,可以提供完全不同的功能,并更适合某些任务,例如,对各种基础物理测试的灵敏度更高[1-4]。高内部状态相干性和跨频率量子信息转换的潜力也使分子在量子信息处理方面具有吸引力[5-9]。尽管近年来取得了令人瞩目的进展,但分子的量子态制备、检测和控制仍然比原子更困难[10-14]。量子逻辑光谱(QLS)[15]在研究带电粒子,特别是分子离子方面显示出巨大的前景和多功能性。它依靠原子“逻辑”离子种类对联合平移运动进行协同冷却和状态读出,并能够实现难以控制的带电粒子(“光谱”离子)的量子态制备、操纵和光谱分析[16-18]。在我们的实验中,所有针对分子离子的激光器都会驱动远失谐的受激双光子拉曼跃迁,而这些跃迁不依赖于分子的特定能级结构。这一点,加上对平移自由度的协同冷却和量子逻辑读出也可以在对分子结构细节要求不高的情况下进行,使得 QLS 可用于多种离子种类。为了探索分子的新应用,以高分辨率测量跃迁频率和其他特性,并解释在这种前所未有的精度水平下变得相关的微小系统效应也至关重要。特别是,自旋和原子核的相对运动增加了
囚禁原子离子系统已证明,其状态准备和测量 (SPAM) 不准确性 [1] 以及单量子比特和双量子比特门错误率 [2–4] 是所有量子比特中最低的。基于囚禁离子的完全可编程、少量子比特量子计算机已经建成 [5, 6]。然而,到目前为止,这些系统尚未扩展到大量量子比特,原因包括异常加热 [7–10]、声子模式拥挤 [11]、光子散射 [12, 13],以及传统光学元件的扩展挑战 [14, 15]。最近,有研究表明,通过直接电磁偶极-偶极相互作用耦合的分子离子量子比特可用于量子信息处理 [16]。虽然使用该方法的分子量子比特系统的可扩展性预计不会受到异常加热或声子模式拥挤的限制,但目前分子离子量子比特并不像原子离子量子比特那样容易控制。特别是,分子离子的 SPAM 由于其通常缺乏光学循环跃迁而变得困难,这使得激光照射分子成为问题 [17]。一种方法是通过共捕获的原子离子进行量子逻辑光谱 (QLS) [18–20],这种方法最近也被用于纠缠原子和分子离子 [21]。然而,由于 QLS 需要在运动基态附近冷却,因此技术要求很高,而且激光操控分子离子会导致自发辐射到暗态。这里,我们描述了如何利用离子阱中的偶极-声子耦合将极性分子离子的偶极矩与多离子库仑晶体的声子模式纠缠在一起。这种现象可以用两种方式直观地理解:作为非静止离子所经历的时间相关电场驱动分子电偶极跃迁,或作为时间相关偶极矩驱动离子运动。对于多个离子,振荡发生在库仑晶体的集体模式中,甚至可以使相距很远的偶极子通过共享声子模式发生强烈相互作用。此外,偶极-声子相互作用可以是
增加车辆电气化将需要大量使用极端充电(XFC),尤其是对于较大的车辆。不协调的XFC可以创建网格挑战,尤其是在分销级别。两种策略可以支持广泛的XFC:×广泛的网格升级(即,升级所有系统以实现最坏情况,完全重合的负载)或集成计划以基于利用负载灵活性和分配能源资源的高级控制和分配能源的高级控件来协调智能系统。