普渡大学化学系、物理系和普渡量子科学与工程研究所,美国印第安纳州西拉斐特 47907 *电子邮件:kais@purdue.edu 摘要:我们提出三个核心思想:1. 量子空间的波粒二象性;2. 通过有序的量子泛函对对所有基本量子门进行分类;3. 一种称为“量子波门”的新型量子门。我们首先研究量子泛函,其与量子态的关系类似于基础量子物理中动量和位置波函数之间的关系:可以在对偶表示之间定义傅里叶变换和熵不确定性原理。量子泛函不仅仅是数学结构,而且具有明确的物理意义和量子电路实现。将量子泛函的分区解释与量子门的效应联系起来,我们通过有序的量子泛函对将所有基本量子门进行分类。通过将量子泛函推广到量子泛函,发现了新型的“量子波门”,作为传统量子门的量子版本。
寻找一个将广义相对论和量子理论融为一体的理论框架已被证明是物理学中最困难的任务之一。这一追求背后的一个普遍假设是引力本身必须具有量子性质。事实上,有人从多个角度反对以量子方式处理物质场而以经典方式处理引力的方案 [1, 2]。然而,这些论点被发现没有预想的那么令人信服(例如,参见 [3, 4, 5])。很明显,关于引力基本性质的最终裁决必须以量子理论和引力都发挥重要作用的情况下的实验证据为基础。标准预期是,这种情况只会出现在涉及极高能量的现象中,或者当曲率值接近普朗克尺度(即 R ∼ 1 /m 2 p)时——这两种情况目前都远远超出了我们的经验范围。然而,最近有提案在桌面实验中寻找引力的可能量子行为,[6, 7]。与此同时,也有提案提出,通过探索涉及与需要量子力学处理的状态下的物质源相关的引力场的思想实验,可能会获得有用的提示,[8, 9]。后一种方法的具体实例已在 [10, 11, 12] 中进行了详细探讨。所考虑的思想实验涉及两个观察者:一个控制放置在两个空间位置的量子叠加中的粒子,另一个决定是否允许第二个粒子对其与第一个粒子的(电磁或引力)相互作用作出反应。这种设置使得粒子之间的相互作用似乎会阻止
摘要在这项工作中,我们研究了一种场景,其中多个身体相互作用系统中的统一量子动力学仅限于单个激发子空间。我们询问在这样的子空间内部的动力学通常与征征热假说(ETH)的预测有何不同。我们表明,对于某些初始状态和可观察结果,如果发生热化,它将无法实现对ETH的其他关键预测。而是遵循不同的通用行为。我们通过分析长期波动,两点相关函数和超时订购的相关器来显示这一点;分析详细介绍与ETH预测的偏差。我们取而代之的是一种类似伦理的关系,可观察到的矩阵元素,具有非随机偏外的关系,其相关性会改变长期行为并约束动力学。此外,我们通过分析计算衰减至平衡的时间依赖性,表明它与初始状态的生存概率成正比。我们最终注意到,在许多物理场景中,堆积的条件很常见,例如旋转波
化学生物学核心设施,EMBL,Heidelberg,德国。9德国海德堡的德国癌症研究中心(DKFZ)RNA生物学与癌症的部门。 10癌研究系,胸外科,医学中心 - 弗莱堡大学,弗莱堡大学,德国癌症财团(DKTK)的医学院 - 伙伴网站Freiburg,德国弗里堡。 11信号转导的系统生物学划分,德国海德堡,德国癌症研究中心。 12型转化肺研究中心海德堡(TLRC),德国肺部研究中心(DZL),德国海德堡。 13德国海德堡海德堡大学儿科血液学,肿瘤学和免疫学系。 14癌症和代谢中信号转导的分配,德国海德堡德国癌症研究中心(DKFZ)。 15德国海德堡的德国癌症联盟(DKTK)。 同等的贡献。 b相等的贡献。 c通讯作者。9德国海德堡的德国癌症研究中心(DKFZ)RNA生物学与癌症的部门。10癌研究系,胸外科,医学中心 - 弗莱堡大学,弗莱堡大学,德国癌症财团(DKTK)的医学院 - 伙伴网站Freiburg,德国弗里堡。 11信号转导的系统生物学划分,德国海德堡,德国癌症研究中心。 12型转化肺研究中心海德堡(TLRC),德国肺部研究中心(DZL),德国海德堡。 13德国海德堡海德堡大学儿科血液学,肿瘤学和免疫学系。 14癌症和代谢中信号转导的分配,德国海德堡德国癌症研究中心(DKFZ)。 15德国海德堡的德国癌症联盟(DKTK)。 同等的贡献。 b相等的贡献。 c通讯作者。10癌研究系,胸外科,医学中心 - 弗莱堡大学,弗莱堡大学,德国癌症财团(DKTK)的医学院 - 伙伴网站Freiburg,德国弗里堡。11信号转导的系统生物学划分,德国海德堡,德国癌症研究中心。12型转化肺研究中心海德堡(TLRC),德国肺部研究中心(DZL),德国海德堡。13德国海德堡海德堡大学儿科血液学,肿瘤学和免疫学系。 14癌症和代谢中信号转导的分配,德国海德堡德国癌症研究中心(DKFZ)。 15德国海德堡的德国癌症联盟(DKTK)。 同等的贡献。 b相等的贡献。 c通讯作者。13德国海德堡海德堡大学儿科血液学,肿瘤学和免疫学系。14癌症和代谢中信号转导的分配,德国海德堡德国癌症研究中心(DKFZ)。15德国海德堡的德国癌症联盟(DKTK)。同等的贡献。b相等的贡献。c通讯作者。
摘要我们基于随机子空间内的迭代最小化,为基于大规模模型的无衍生衍生型选择引入了一个通用框架。我们为我们的方法提供了概率的最差复杂性分析,特别是我们在实现给定最佳性之前证明了迭代次数的高概率界限。该框架专门针对非线性最小二乘问题,该框架具有基于高斯– Newton方法的基于模型的框架。此方法通过构造本地线性插值模型来近似Jacobian,从而实现可扩展性,并在每个迭代中计算具有用户确定的维度的每个迭代的新步骤。然后,我们描述了该框架的实际实现,我们称之为dfbgn。我们概述了选择插值点和搜索子空间的有效技术,得出的实现了,该实现的每卷线性代数成本(在问题维度为线性),同时还可以通过评估来衡量,同时还可以实现快速客观的降低。广泛的数值结果表明,DFBGN提高了可伸缩性,在大规模的非线性最小二乘问题上产生了强劲的性能。
摘要。虽然量子计算机有望显著提高计算速度,但早期量子机的有限尺寸推动了空间有界量子计算的研究。我们将计算具有单侧误差的函数 푓 的量子空间复杂度与其跨度程序大小对实数的对数联系起来,这是一个经典量,在证明公式大小下界的尝试中得到了充分研究。在更自然的有界误差模型中,我们表明,单一量子算法(即直到最后一步才进行测量的算法)计算具有有界(双侧)误差的 푓 所需的空间量至少是其近似跨度程序大小的对数。近似跨度程序已被引入量子算法领域,但尚未进行经典研究。但是,函数的近似跨度程序大小是其跨度程序大小的自然概括。
摘要:基于脑电数据的情绪识别一直是学术界和工业界的研究热点,为实现和谐的人机交互奠定了坚实的基础。但现有研究大多直接对脑电特征进行分类,或者采用“特征变换+分类”的两阶段范式进行情绪识别。前者通常无法获得理想的效果,而后者则不可避免地打破了特征变换与识别之间的联系。在本文中,我们提出了一个简单而有效的模型——半监督稀疏低秩回归(S3LRR),将判别子空间识别和半监督情绪识别统一在一起。具体而言,S3LRR 通过将最小二乘回归(LSR)中的投影矩阵分解为两个因子矩阵来表示,从而完成判别子空间识别并将子空间脑电数据表征与情绪状态联系起来。在基准SEED_V数据集上的实验研究表明,S3LRR联合学习机制使得情绪识别性能得到较大提升。
本文提出了一种使用有符号累积分布变换 (SCDT) 对一维信号进行分类的新方法。所提出的方法利用 SCDT 的某些线性化特性,使问题在 SCDT 空间中更容易解决。该方法使用 SCDT 域中的最近子空间搜索技术来提供一种非迭代、有效且易于实现的分类算法。实验表明,所提出的技术在使用极少量训练样本的情况下优于最先进的神经网络,并且对模拟数据上的分布外示例也具有鲁棒性。我们还通过将所提出的技术应用于 ECG 分类问题来证明其在实际应用中的有效性。实现所提出的分类器的 Python 代码可以在 PyTransKit [1] 中找到。
成分梯度合金是功能梯度材料 (FGM) 的一个子类,它利用单个金属部件的局部成分变化来实现比传统单一材料部件更高的性能。在之前的研究 [Kirk, T., Galvan, E., Malak, R., and Arroyave, R., 2018, “增材制造功能梯度材料中梯度路径的计算设计,” J. Mech. Des., 140, p. 111410. 10.1115/1.4040816] 中,作者提出了一种计算设计方法,该方法避免了限制梯度合金可行性的常见问题(例如有害相),并针对性能目标进行了优化。然而,以前的方法只对成分空间的内部进行采样,这意味着设计的梯度必须包括整个梯度空间中的所有元素。因为即使少量的额外合金元素也会引入新的有害相,所以这一特性通常会忽略原本无法解决的问题的潜在更简单的解决方案,从而阻碍向状态空间添加新元素。本研究通过引入一种在设计搜索中包含较少元素子空间的采样方法来改进以前的方法。新方法在人工扩展的状态空间形式内进行采样,并将真实区域之外的样本投射到最近的真实子空间。首先通过观察 3D、4D 和 5D 状态空间中每个子空间中的样本分布来评估该方法。接下来,在合成的 3D 问题中进行参数研究,将新采样方案的性能与以前的方法进行比较。最后,应用更新的方法设计从不锈钢到等原子 NiTi 的梯度,该梯度具有嵌入式形状记忆驱动等实际用途,而以前的方法未能找到可行的途径。[DOI:10.1115 / 1.4053629]
这篇早期版本的文章已经过同行评审和接受,但尚未通过构图和复制过程。最终版本的样式或格式可能会略有不同,并且将包含指向任何扩展数据的链接。