这项工作考虑了NA热管的各种功率转换入口温度(PCIT)为1100 K,1150 K和1200 K,而每种PCIT的LI热管,1100 K,1150 K,1150 K,1200 K和1400 K,并确定和分析了组合热交换器和反应器子系统的质量和压力损失。na显示出比相同几何形状的LI的总工作温度低,最大热量能力的五分之一。因此,整个基于NA的子系统最终的质量是基于LI的子系统的三倍,给出了所需的热管数五倍。在1100 K的低PCIT下,基于NA的子系统表现出最低的压力损失,因为较大的总横截面流域和相对较低的摩擦压力损失。但是,随着PCIT的增加,摩擦压力损失增加,导致1200 K PCIT的压力损失比基于LI的子系统更高。基于LI的子系统由于在此温度下的Brayton工作流体密度低,因此在1400 K PCIT处所有分析病例的压力损失最大。
摘要。随着近几十年来激光技术的发展,该设备已用于多种应用,例如医学,军事,工业,全息,光谱和天文学。在过去的几年中,军事行动进行更好的沟通取决于射频。对安全威胁和电磁干扰的脆弱性是该电磁频谱区域的主要问题。因此,注意可见和红外(IR)区域。此频谱提供了数据的安全传输。由于狭窄光束的差异和光束的相干性,拦截激光信号的概率非常低。因此,它使该设备成为安全军事行动的好候选人。结果,激光设备和激光引导的武器(LGW),例如激光目标指定者和横梁骑手,已成为战场上不可否认的工具。通过提供激光检测,到达角度,波长歧视和时间表征来减少对LGW威胁的脆弱性是激光警告系统(LWS)的主要意图。该系统由三个主要子系统组成。光学子系统将由频谱过滤器,聚焦镜头和检测一个组成,该检测是由唯一数组配置(尤其是IR光电探测器(IRPD)]和处理子系统中的少数检测器制成的。本评论论文给出了LWSS检测子系统中使用的光电遗传学的特定浓度。另外,在表中比较了所有研究的结构。在过去的几十年中,随着纳米制作和纳米技术取得的进展,已进行了结果研究,以提高IRPD的性能,例如提高生产产量,使其在制造过程中变得简单,降低制造成本,并提高工作温度。此外,已经对一些纳米结构进行了调查,以增强IRPD的光耦合和光 - 物质相互作用。最后,我们将分析我们在纳米基质研究中心模拟和构建的检测子系统。
简化生命周期评估 (SLCA) 通常在成品规模上进行。但是,也可以对组件或子系统(规模向下移动)或公司的所有产品(规模向上移动)执行 SLCA。与生物生态学类似,不同规模的分析似乎会提出不同的问题并揭示不同的见解。在本研究中,通过比较子系统、产品和公司级别的高性能飞机的结果来探索多尺度简化 LCA (SLCA)。结果清楚地表明,复杂产品的主要子系统之间的 SLCA 结果存在很大差异,而这些差异无法从系统级 SLCA 中得出,并且不同级别的结果往往服务于不同的公司用户。将单个产品的结果与多个公司产品的结果进行比较时,可以获得类似的好处。因此,多尺度生命周期分析的执行可能会带来相当大的优势。
量子计算应用的主要问题之一是解决实际问题所需的量子比特数量远远大于当今的量子硬件的数量。在本文中,我们引入了大系统采样近似 (LSSA) 算法,通过 N gb 量子比特基于门的量子计算机解决规模高达 N gb 2 N gb 的 Ising 问题,通过 N an 量子比特量子退火器和 N gb 量子比特基于门的量子计算机的混合计算架构解决规模高达 N an 2 N gb 的问题。通过将全系统问题划分为更小的子系统问题,LSSA 算法然后使用基于门的量子计算机或量子退火器解决子系统问题,并通过基于门的量子计算机上的变分量子特征求解器 (VQE) 优化不同子系统解与全问题哈密顿量的振幅贡献,以确定近似的基态配置。 LSSA 具有多项式时间复杂度,可以进一步扩展到更深层次的近似,计算开销随问题规模线性增长。在模拟器和真实硬件上研究了不同子系统规模、子系统数量和完整问题规模对 LSSA 性能的影响。混合门和退火量子计算架构的全新计算概念为研究大规模 Ising 问题和组合优化问题提供了广阔的可能性,使量子计算在不久的将来成为可能。
5.1. GBAS 任务 . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii5.1. GBAS 任务 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii5.1. GBAS 任务 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GBAS 架构 ................................................................................................................ 47 5.3.1. 地面子系统 .............................................................................................................. 47 5.3.1.1. 接收单元 .............................................................................................................. 48 5.3.1.2. 处理单元 .............................................................................................................. 49 5.3.1.3. 传输单元 ............................................................................................................. 49 5.3.2. 飞行器子系统 ............................................................................................................. 50 5.4. GBAS 完整性与性能 ............................................................................................................. 51 5.4.1. 完整性分配
o 评估整个客运航空队减少全球变暖的潜力 o 使用多学科设计、分析和优化方法来识别和建模用于飞行器的氢燃料飞机 o 开发可行的发电和能量转换子系统 o 开发可行的电力电子、配电和电机驱动推进子系统 o 开发热管理系统以优化效率
系统和系统的系统 系统有许多定义。INCOSE 将系统定义为实现既定目标的一组集成元素。这些元素包括产品(硬件、软件和固件)、流程、人员、信息、技术、设施、服务和其他支持元素(INCOSE,2006 年)。Buede 将系统定义为“一组组件(子系统、部分),它们共同作用,通过完成一组任务来实现一组共同目标”(Buede,2000 年)。为了本文的目的,我们将系统视为能够执行一组任务以满足使命或目标的东西。例如,汽车可以将人从一个地方移动到另一个地方,它是一个系统。汽车上的发动机本身无法实现目标。从汽车上拆下并放在地上后,发动机什么也不做,直到它与系统的其他部分(例如燃料输送元件)结合,才能与其他部件协同工作,实现将个人移动到另一个地方的目标。这并不是为了降低发动机的复杂性或重要性。它只是一个更广泛系统的一个子系统。燃料输送子系统也是如此。它是汽车的重要组成部分,但只是汽车中的一个子系统。
我们的集成系统可以适应从低到高的有效载荷,并能满足客户的培训需求,包括公务机、商用飞机、直升机和超轻型喷气式飞机 (VLJ) 等新类别。我们所有子系统都具有通用的软件和硬件接口,这意味着安装、调试和用户培训更加轻松快捷。我们的经验意味着我们可以帮助您缩短开发时间,并确保我们推荐的子系统具有最佳的性能/尺寸比,以满足您的确切要求。
我们的集成系统可适应从低到高的有效载荷,并可满足客户的培训需求,包括商务喷气机、商用飞机、直升机和超轻型喷气机 (VLJ) 等新类别。我们所有子系统均采用通用软件和硬件接口,这意味着安装、调试和用户培训更加轻松快捷。我们的经验意味着我们可以帮助您缩短开发时间,并确保我们推荐的子系统具有最佳性能/尺寸比,以满足您的确切要求。