最近的进步导致了量子网络的第一型构图,其中量化是由产生双部分纠缠状态的来源分布的。这提出了基于在本地运营和经典沟通的两部分来源中在Quantun网络中生成哪些状态的问题。在这项工作中,我们研究了基于最大纠缠的两分四分位州的网络作品的有限的本地运营和经典交流(LOCC)的国家转型。我们首先得出了artrary网络结构的对称性,因为这些确定了哪些转换。然后,我们证明了与树图相反的,为此,已经证明可以达到同一纠缠类中的任何状态,存在可能会概率地达到的状态,但如果网络包含一个周期,则可以确定性地达到。此外,我们还提供了一种系统的方法来确定在一个周期组成的网络中无法达到的状态。此外,我们提供了可以通过协议仅测量一次的协议中可以在周期网络中达到的状态的完整表征,而协议的每个步骤都会导致确定性的转换。最后,我们提出了一个无法使用如此简单的协议来实现的考试,并符合我们的知识,这是完全纠缠的状态中需要三轮经典交流的LOCC转换的第一个例子。
在许多尺度上的量子网络对未来的量子技术和量子系统实验至关重要。光子链接启用量子网络。他们将连接共同定位的量子处理器,以实现大规模量子计算机,提供远量子计算机之间的联系以支持分布式,授权和盲量量子计算,并将在空间中链接遥远的节点,从而启用基本物理学的新测试。在这里,我们讨论了支持量子网络的光子工具和协议的最新工作。我们提供了分析结果和数字,以实现区分性误差对关键光子电路的影响;我们考虑了各种错误模型,并开发了新的指标来基准测试发电光子状态的质量。我们回顾了一位作者之一,以减轻可区分性错误。我们还通过相干状态近似对光子电路的有效仿真进行了一部分作者的一部分结果。我们研究了通用集合,统一的T设计和光子学之间的一些相互作用:虽然我们朝着这个方向陈述的许多结果可能是专家知道的,但我们的目标是使它们引起更广泛的量子信息科学界的注意,并以这个社区更熟悉的方式来表达它们。我们证明,从代表理论中翻译结果,当dimv≥2时,在u(v)中没有非世界性的无限闭合2个设计。因此,我们观察到线性光学单位形成1个设计,但不是2个设计。最后,我们应用了Oszmaniec和Zimborás的结果,以证明使用任何非平凡的快照门来增强线性光学单位,足以实现普遍性。
由于光子损失而无法立即将摘要现有的经典光学网络基础架构用于量子网络应用。启用量子网络的第一步是将量子中继器集成到光网络中。但是,量子硬件中固有的费用和内在噪声强调了对有效的部署策略的需求,以优化量子折扣和记忆的分配。在本文中,我们提出了一个用于网络计划的综合框架,旨在有效地在现有基础架构上分配量子中继器,目的是在纠缠分布网络中最大化量子网络实用程序。我们将我们的框架应用于几个案例,包括哑铃网络拓扑的初步插图以及Surfnet和Esnet的现实情况。我们探讨了量子中继器中量子存储器多路复用的影响,以及记忆相干时间对量子网络实用程序的影响。我们进一步研究了不同公平假设对网络计划的影响,从而发现了它们对实时网络性能的影响。
施密特分解:假设 | ۧ 𝜓 𝐴𝐵 是复合系统 AB 的纯态。则系统 A 存在正交态 | ۧ 𝑖 𝐴,系统 B 存在正交态 | ۧ 𝑖 𝐵,使得
1)瑞士苏黎世大学实验免疫学研究所。2)瑞士苏黎世大学疾病分子机制。3)瑞士苏黎世分子生命科学系4)奥地利科学学院(IMBA)的分子生物技术研究所,维也纳生物中心(VBC),维也纳,奥地利,奥地利。5)欧洲分子生物学实验室,EMBL罗马 - 意大利蒙特诺多的表观遗传学和神经生物学单位。6)荷兰乌得勒支大学生物学与生物复杂研究所,生物动力与生物复杂研究所,荷兰乌特雷赫特生物学系。7)新星科学技术学院,葡萄牙2829 - 516年,新星科学技术学院生命科学学院,诺维亚科学与技术学院生命科学系, 7)。 8)副实验室I4HB - 诺斯博亚大学科学技术学院卫生与生物经济学研究所,葡萄牙2829-516 CAPARICA,葡萄牙7)。8)副实验室I4HB - 诺斯博亚大学科学技术学院卫生与生物经济学研究所,葡萄牙2829-516 CAPARICA,葡萄牙
量子互联网是量子信息处理的圣杯,可以在全球范围内部署广泛的量子技术和协议。但是,在量子互联网成为现实之前,必须应对许多挑战。也许其中最关键的是实现量子中继器,这是量子信息长距离传输的重要组成部分。作为经典中继器,扩展器或助推器的类似物,量子中继器致力于克服构成量子网络的量子通道中的损失和噪声。在这里审查了量子中继器的概念框架和体系结构,以及朝着实现的实验进步。还讨论了通过点对点量子通信来克服对通信率的限制的各种近期建议。最后,概述了量子中继器在设计和实施量子互联网的更广泛挑战中的方式。