摘要 自动驾驶决策是自动驾驶系统的重要组成部分,用于向无人驾驶车辆告知和更新目标运动情况。然而,由于野外动态交通场景中交通目标的尺度差异,端到端的自动驾驶决策仍然是一个巨大的挑战。针对这些问题,该文提出了一种结合注意机制和时空特征提取的新模型。具体而言,对于具有尺度差异的交通目标的重要空间信息,将高度H、宽度W和通道C的空间维度相互独立,以构建稀疏空间注意图。此外,通过在每个主干块的末端修剪特征图元素来训练空间网络,使空间网络的两个子网络的准确率分别提高了2.3%和3.9%。然后将提取出的空间信息与先前的速度作为输入联合输入到时间序列网络中,以获得车辆的转向角度和速度。在公开虚拟数据集上的实验表明,该模型的预测准确率达到85.8%,与其他SOTA模型相比,分别提升了4.8%和2.2%。
工程应用,因为它们表现出与软组织相容的机械行为。[1–3] 此外,可降解的化学交联网络在降解过程中保持其 3D 结构,因此会随时间均匀地丧失其机械性能。然而,它们在因用户操作、外科手术处理或实施而导致意外损坏或断裂(开裂、切割、拉伸)后无法修复,[4] 也无法重塑以满足外科手术要求或手术技术。因此,自修复网络最近越来越受欢迎。 [4–9] 根据键的性质,人们采用了不同的策略为大分子网络提供自修复特性,这些策略包括动态物理键(例如疏水相互作用、氢键、静电相互作用、金属-配体相互作用、主客体相互作用和π-π堆积)或化学可逆键(例如狄尔斯-阿尔德加合物、亚胺键、二硫键、硼酸酯键和腙键)。此类策略已应用于可降解水凝胶,文献中已报道了大量实例。然而,尽管可降解自修复弹性体在医疗器械方面具有巨大潜力,但报道的此类弹性体仍然很少,尤其是当它们必须与流行的熔融沉积成型 (FDM) 3D 打印兼容时。[10]
环氧树脂是一种反应性预聚物,其特征在于存在由两个碳原子和一个氧原子组成的环状结构的环氧基团,通过自均聚或与胺、酸酐、酸、醇或酯等共反应物发生交联反应形成大分子网络[1-3]。环氧树脂已被公认为最广泛使用的具有战略意义的热固性材料,由于其固有的机械和化学稳定性、耐热和耐腐蚀性、电绝缘性和强粘结性,通常应用于防腐涂料、粘合剂、半导体封装材料、电绝缘材料和高性能复合材料[4,5]。环氧树脂市场由印度、韩国、中国和日本等亚洲国家主导,其份额高达41.8%。这受到与北美和欧洲相比环境法规相对较少和国家鼓励制造业政策的影响,并且由于产品的性质,在亚洲大陆的发展中国家和新兴国家中得到广泛使用,该产品在道路和建筑物等建筑领域需求量很大。2019 年至 2024 年期间的年均增长率也是亚洲最高,为 6.9%,其次是中东和非洲、南美、北美和欧洲。2022 年,
政府太空组织正在通过各种项目积极地推进基于空间的量子密钥分布(QKD)。NASA正在开发具有海克(空间纠缠和退火量子实验)的安全量子网络,并在ISS上测试量子纠缠。ESA领导EAGLE-1任务与SES和欧洲合作伙伴部署欧洲第一个基于太空的QKD系统。中国的CNSA与中国科学技术大学(USTC)合作,在2016年与Micius卫星开创了QKD,并继续扩大其量子卫星网络。 CSA(加拿大航天局)正在与量子计算研究所(IQC)合作开发国家QKD示威者Qeyssat。 DARPA通过其量子孔径项目投资量子安全通信,探索用于军事应用的量子感应。中国的CNSA与中国科学技术大学(USTC)合作,在2016年与Micius卫星开创了QKD,并继续扩大其量子卫星网络。CSA(加拿大航天局)正在与量子计算研究所(IQC)合作开发国家QKD示威者Qeyssat。DARPA通过其量子孔径项目投资量子安全通信,探索用于军事应用的量子感应。
在当今的量子通信中,主要问题之一是缺乏可以同时确保高率和长距离的量子中继器设计。最近的文献已经建立了端到端能力,这些容量是通过量子网络中量子和私人通信的最一般协议可以实现的,其中包括量子中继器链的情况。但是,是否存在实现这种能力的物理设计仍然是一个具有挑战性的目标。在这种动机的驱动下,在这项工作中,我们为连续可变的量子中继器提出了设计,并表明它实际上可以实现这一壮举。我们还表明,即使在嘈杂的政权中,我们的费率也超过了Pirandola-Laurenza-ottaviani-Banchi(PLOB)结合。使用无噪声线性放大器,量子记忆和连续变化的钟形测量值,我们的中继器设置是开发出来的。,我们为我们在设计中使用的连续变量量子记忆的非理想模型提出了一个非理想模型。然后,我们表明,如果使用量子链路太嘈杂和/或低质量的量子记忆和放大器,那么潜在的量子通信率将偏离理论能力。
最近的破坏性事件(例如Covid-19或2021年的苏伊士运河障碍物)表明,我们的社会和经济对供应链的破坏有多么脆弱[1]。由于强大的全球化,现代供应链变得非常复杂,跨越了多个国家甚至大陆,涉及更长的运输距离和全球分布的供应商。它们高度依赖于动态性质的互连和紧密合成的网络。遇到影响系统子网络的事件的破坏可能会对整个供应链产生昂贵,有时甚至是灾难性的级联效应。与关键的公共安全组织一起,我们正在开发Reskriver 1,这是一个危机管理平台和服务,为广泛的危机场景提供相关,相互联系和高质量的信息。该平台的主要目的是为危机团队提供最好的概述,以评估当前状况并将其传达给人群。示威者的供应供应替代商品和资源”着重于供应网络对危机相关商品和资源的可靠性。中心目标是对可能影响网络和瓶颈早期识别的威胁和事件的评估和管理。该平台不断地充满了有关危机商品供应链的必要信息,例如制造商,生产能力,进口商和运输路线。如果
大脑由复杂的神经元和连接网络组成,类似于人工网络的节点和边缘。对大脑接线图进行网络分析可以深入了解大脑如何支持计算并调节感知和行为背后的信息流。成年苍蝇第一个全脑连接组已经完成,其中包含超过 130,000 个神经元和数百万个突触连接 1–3 ,这为分析完整大脑的统计特性和拓扑特征提供了机会。在这里,我们计算了二节点和三节点基序的普遍性,检查了它们的强度,将这些信息与神经递质组成和细胞类型注释联系起来 4,5 ,并将这些指标与其他动物的接线图进行了比较。我们发现苍蝇大脑网络显示出富俱乐部组织,具有大量(连接组的 30%)高度连接的神经元。我们确定了富俱乐部神经元的子集,它们可能充当信号的整合器或广播器。最后,我们检查了基于 78 个解剖定义的大脑区域或神经纤维的子网络。这些数据产品在 FlyWire Codex (https://codex.flywire.ai) 中共享,应作为探索神经活动与解剖结构之间关系的模型和实验的基础。
i. 顾问应确保通过顾问专门为此目的分配的笔记本电脑/台式电脑(“设备”)而不是任何其他私人或公共设备对银行的 VPN 进行远程访问。 ii. 服务提供商应确保只有其授权的员工/代表才能访问设备。 iii. 顾问应按照银行现行的标准和政策对设备进行强化/配置。 iv. 在银行提供此类远程访问之前,顾问和/或其员工/代表应按照银行规定的格式提供承诺和/或信息安全声明。 v. 顾问应确保服务在物理保护和安全的环境中执行,以确保银行数据和工件的机密性和完整性,包括但不限于银行代表可以检查的信息(关于客户、账户、交易、用户、使用情况、员工等)、架构(信息、数据、网络、应用程序、安全性等)、编程代码、访问配置、参数设置、可执行文件等。顾问应协助和/或将设备移交给银行或其授权代表进行调查和/或法医审计。vi. 顾问应负责保护其网络和子网络(从中对银行网络进行远程访问),有效防范未经授权的访问、恶意软件、恶意代码和其他威胁。
摘要 - Quantum Internet需要确保及时提供涉及分布式量子计算或传感的任务中的纠缠量子。这是通过优化量子网络的上流方法来解决的[21],其中在接收任务之前分发了纠缠。任务到达后,所需的纠缠状态将通过本地操作和经典交流达到。纠缠前的分布应旨在最大程度地减少所用量子的数量,因为这降低了矫正性的风险,从而降低了纠缠状态的降解。优化的量子网络考虑了多跳光网络,在这项工作中,我们正在用卫星辅助纠缠分布(SED)补充它。动机是卫星可以捷径拓扑,并将纠缠放在两个没有通过光网络直接连接的节点。我们设计了一种用SED纠缠纠缠的算法,这导致纠缠前分布中使用的量子数量减少。数值结果表明,SED可以显着提高小量子网络的性能,而纠缠共享约束(EC)对于大型网络至关重要。索引条款 - Quantum网络,自上而下的纠缠段,卫星辅助纠缠分布
对网络性能的抽象准确和彻底的分析具有挑战性。网络仿真和仿真只能涵盖网络可以体验到的连续发展的工作负载集的子集,为未探索的角案例和错误留出空间,这些案例和错误可能会导致实时流量的次优性能。排队理论和网络计算的技术可以在性能指标上提供严格的界限,但通常需要网络组件的行为,而流量的到达模式则可以通过简洁且行为良好的数学功能近似。因此,它们不立即适用于新兴工作负载以及用于处理它们的新算法和协议。我们探讨了一种不同的方法:使用正式方法来分析网络性能。我们表明,可以准确地对网络组件及其逻辑上的队列进行建模,并使用程序合成中的技术来自动生成简洁的可解释的工作负载,作为有关性能指标的查询的答案。我们的方法在分析网络性能的现有工具的空间中提供了一个新的观点:它比模拟和典范更详尽,并且可以轻松地应用于一阶逻辑中可表达的算法和协议。我们通过分析数据包调度算法和小叶子网络并产生可能导致吞吐量,公平性,饥饿和延迟问题来证明方法的有效性。