利用免疫系统治疗恶性肿瘤已成为癌症疗法的强大工具,近年来,FDA批准的免疫疗法爆炸了。作为针对肿瘤的细胞毒性活性的主要介质,CD8 T细胞是当前治疗的重点,例如免疫检查点抑制(1),CAR-T细胞疗法(2)和癌症疫苗(3)。有效的CD8 T细胞反应的产生是一个复杂的过程,涉及免疫系统的多个组成部分。树突状细胞(DCS)在有效的CD8 T细胞反应对肿瘤的策划中起着核心作用(4,5)。在最基本的水平上,T细胞介导的抗癌免疫反应集中在DC抗原表现周围。此过程始于肿瘤衍生的抗原的直流捕获,这些抗原被细胞内载于MHC分子。然后将这些肽MHC复合物(PMHC)转运到细胞表面,以启动并激活肿瘤流血淋巴结内的效应T细胞。虽然在DCS Primes CD8 T细胞上加载到MHC I类分子上的抗原,而MHC II类分子对抗原的呈现可以启用CD4 T助手(Th)细胞。“ CD4帮助”,特别是
黑色素瘤是一种最可怕的皮肤癌,死亡率很高,最初是通过临床筛查、皮肤镜分析、活检和组织病理学检查进行目视诊断的。如果诊断和早期治疗延误,就会变得很危险。图像处理技术的最新发展有助于有效地检测黑色素瘤,因为由于病变的细粒度变化,检测黑色素瘤是一项艰巨的工作。本文研究了一种使用粒子群优化人工神经网络分析病变不规则性的新分类程序。在本研究论文中,提取病变的颜色特征并使用 PSO-ANN 分类器进行分类。通过标记假阳性率和真阳性率获得的接收者操作特性在分析计算机辅助诊断系统的诊断潜力方面起着至关重要的作用。应用于 ISIC 数据库的分类技术表明曲线下面积为 0.96853,特异性为 90.0%,灵敏度为 94.07%,准确率为 93.04%。
粒子群优化 (PSO) 是一种迭代搜索方法,它使用随机步长将一组候选解决方案围绕搜索空间移动到已知的最佳全局和局部解决方案。在实际应用中,PSO 通常可以加速优化,因为梯度不可用且函数评估成本高昂。然而,传统的 PSO 算法忽略了从单个粒子的观察中可以获得的目标函数的潜在知识。因此,我们借鉴了贝叶斯优化的概念,并引入了目标函数的随机代理模型。也就是说,我们根据目标函数的过去评估拟合高斯过程,预测其形状,然后根据它调整粒子运动。我们的计算实验表明,PSO 的基线实现(即 SPSO2011)表现优异。此外,与最先进的代理辅助进化算法相比,我们在几个流行的基准函数上实现了显着的性能改进。总体而言,我们发现我们的算法实现了探索性和利用行为的理想特性。
摘要 — 电动自行车 (ebike) 的发展因其经济和环境优势而受到越来越多的关注。本研究基于粒子群优化对电动自行车充电站进行尺寸优化。它基于电动自行车电池的消耗情况、太阳能和风能以及组件的安装、更换和维护成本。第一步,使用二阶非线性电热模型确定电动自行车电池的消耗情况。然后,使用一年的太阳能和风能数据来确定充电站实施地点的能源可用性。最后,将成本定义为目标函数,同时考虑太阳能光伏板数量、风力涡轮机数量、蓄电池数量和年度充电需求的限制。研究了将在法国安纳西理工学院校园内实施的充电站的背景。结果表明,与未进行优化的尺寸相比,粒子群优化可使成本降低约 56.04%。
粒子群优化 (PSO) 是一种流行且广泛使用的优化算法,用于解决复杂问题。它以简单和易于实施而闻名。人工鸟在搜索空间中移动以找到最佳解决方案。尽管文献中提出了许多 PSO 算法,但 PSO 算法中尚未探索幸福和健康等概念。本文基于这一研究空白。幸福和健康粒子群优化 (HaHePSO) 算法是通过将幸福和健康概念纳入粒子群优化算法而创建的。HaHePSO 算法中的每个粒子都与幸福和健康变量相关联。PSO 算法中人工鸟的移动基于适应度值。在 HaHePSO 算法中,人工鸟的移动取决于幸福、健康和适应度值。在 PSO 算法中,人工鸟朝着局部最佳和全局最佳适应值的方向移动。这一思想在 HaHePSO 算法中得到了扩展,其中人工鸟朝着幸福感、健康和适应值的局部最佳和全局最佳方向移动。与 PSO 算法相比,本文提出的 HaHePSO 算法占用更多空间并需要额外计算。这是因为现在每个粒子都有与之相关的幸福感和健康变量,并且搜索空间中的移动由适应度、幸福感和健康值引导。
1 莫斯科国立土木工程大学,129337,Yaroslavskoe shosse, 26,莫斯科,俄罗斯 2 电子工程系,GRIET,Bachupally,海得拉巴,特伦甘纳邦,印度。 3 机械工程系,KG Reddy 工程技术学院,Chilkur(Vil),Moinabad(M),Ranga Reddy(Dist),海得拉巴,500075,特伦甘纳邦,印度。 4 奇特卡拉大学研究影响与成果中心,拉贾普拉- 140417,旁遮普,印度 5 北阿坎德邦大学,德拉敦 - 248007,印度 6 洛夫利专业大学,帕格瓦拉,旁遮普,印度 7 奇特卡拉研究与发展中心,奇特卡拉大学,喜马偕尔邦 - 174103,印度 8 计算机工程与应用系,GLA 大学,马图拉-281406(UP),印度 9 计算机技术工程系,伊斯兰大学技术工程学院,纳杰夫,伊拉克 通讯作者:nidziyen@mgsu.ru
摘要:随着先进制造对精确微型和纳米级图案的不断增长的要求,迫切需要对EBL过程的优化。当前的优化方法涉及GA与GWO或PSO与GWO等组合,而GWO与不良的探索 - 探索折衷折衷相困难,因此融合到次优溶液或溶液的不足。通过创新的自适应狼驱动的蜂群进化方法克服了上述挑战,使GA,PSO和GWO的优势协同以进行EBL的优化过程。从GA中产生多样化的解决方案人群是AWDSE的开始,以确保搜索空间中的广泛探索。此外,使用GWO的基于角色的分类将解决方案分层分类为不同的角色:Alpha,Beta,Gamma,Delta。的解决方案(Alpha,beta)通过基于PSO的更新来完善,这些更新通过更新解决方案来利用搜索空间,而解决方案排名较低(Gamma,delta)则受到GA驱动的交叉和突变操作,以维持多样性和探索。GA的进化操作与PSO粒子更新之间的自适应切换肯定是由GWO的领导动力驱动的,GWO的领导动力可以使多样化强化的更密集平衡,从而可以提高收敛精度和速度。实验结果证明,AWDSE能够提高约18%的临界维度,而延迟时间的收缩率达到12%,效果超过了GA-GWO和PSO-GWO的传统方法。这一进步强调了AWDSE可以显着提高EBL效率和准确性的可能性,而远离纳米制造过程的景色却越来越快。
确保建筑项目是安全的,例如堆叠结构,需要考虑在此期间免疫结构。桩定居点(PS)是一个重要的项目问题,并且正在引起广泛关注,以防止在施工开始之前发生故障。几个用于估算桩运动的项目可以帮助了解加载阶段的项目的观点。在PS模拟中使用了最聪明的策略用于桩运动的数学计算。因此,在本文中,考虑了精确的桩运动计算,考虑了开发的框架操作支持向量回归(SVR)以及亨利的气体溶解度优化(HGSO)和粒子群优化(PSO)。优化器的使用是调整SVR的一些内部设置。选择了使用已发达的SVR-HGSO和SVR-PSO结构的陆地岩石特征来研究基于土地岩石特征的桩的运动。使用五个指标来评估每个模型的性能。这项研究的主要目的是以两个开发模型的形式评估人工智能方法,以使用混合优化的框架模拟桩沉降速率。建模的R 2在0.99水平上类似地获得。SVR-PSO的RMSE分别出现超过两倍的SVR-HGSO,分别为0.46和0.29 mm。此外,测试阶段结果显示,SVR-HGSO的性能较高,MAE指数为0.278,比另一个索引低57.10%。OBJ通过0.283mm级别计算的SVR-HGSO证明了准确的建模。
背景:用于分析疾病扩散的最常用的数学模型是易感暴露感染的回收(SEIR)模型。此外,SEIR模型的动力学取决于几个因素,例如参数值。目标:本研究旨在比较两种优化方法,即遗传算法(GA)和粒子群优化(PSO),以估算SEIR模型参数值,例如感染,过渡,恢复和死亡率。方法:将GA和PSO算法与SEIR模型的估计参数值进行了比较。适应性值是根据累积阳性covid-19病例的实际数据与从seir covid-19模型解决方案的案例数据之间的误差计算得出的。此外,使用四阶Runge-kutta算法(RK-4)计算了CoVID-19模型的数值解,而实际数据是从印度尼西亚雅加达省正Covid-19 Case的累积数据集获得的。然后使用两个数据集比较每个算法的成功,即数据集1,代表COVID-19的扩展的初始间隔和数据集2,该间隔代表一个间隔,其中COVID-19 Case Case较高增加。结果:估计四个参数,即由于疾病引起的感染率,过渡率,恢复率和死亡率。在数据集1中,当值= 0.5时,GA方法的最小误差(即8.9%)发生,而PSO的数值误差为7.5%。在数据集2中,GA方法的最小误差,即31.21%,当时发生在= 0.5时,而PSO的数值误差为3.46%。结论:基于数据集1和2的参数估计结果,PSO比GA具有更好的拟合结果。这表明PSO对所提供的数据集更健壮,并且可以更好地适应Covid-19-19的流行病的趋势。关键字:遗传算法,粒子群优化,SEIR模型,COVID-19,参数估计。文章历史记录:2024年2月12日,2024年5月17日第一个决定,2024年6月20日接受,在线获得2024年6月28日
摘要:随着当今社会的快速发展,交通环境变得越来越复杂。作为智能车辆的重要组成部分,轨迹跟踪因其稳定性和安全性引起了极大的关注。在高速工作等极端工作条件下,准确性和不稳定性很容易发生。在本文中,为分布式驱动车辆提出了一种轨迹跟踪控制策略,以确保在高速和低固定限制条件下进行横向稳定性。模型预测控制器(MPC)用于控制前轮角度,并且设计了粒子群优化(PSO)算法以适应MPC控制参数。滑动模式控制器控制后轮角度,并且通过分析β-来判断车辆不稳定性度。β相平面。在本文中设计了不同不稳定性度的控制器。最后,扭矩分隔器的设计目的是考虑驱动防滑。设计的控制器通过CARSIM和MATLAB-SIMULINK共模拟验证。结果表明,本文设计的轨迹跟踪控制器有效地提高了在确保稳定性的前提下的跟踪精度。