简介 ................................................................................................................................................ 1 入门 ................................................................................................................................................ 2 登录 ................................................................................................................................................ 2 省级电子表格解决方案主页 ............................................................................................................ 3 输入客户数据 ...................................................................................................................................... 4 客户搜索 ...................................................................................................................................... 4 手动数据输入 ...................................................................................................................................... 5 供应商信息 ...................................................................................................................................... 7 供应商搜索 ...................................................................................................................................... 7 手动数据输入 ...................................................................................................................................... 7 记录免疫接种 ...................................................................................................................................... 8 Panorama 中的客户免疫接种数据 ................................................................................................ 8 输入免疫接种数据 ................................................................................................................................ 9 提交电子表格 ................................................................................................................................ 10 错误管理指南 ................................................................................................................................ 11 常见问题 .......................................................................................................................................... 12 资源........................................................................................................................................... 13 附录 1:关闭 Google Chrome 中的自动填充功能 ...................................................................................... 14 修订历史记录 .......................................................................................................................................... 15 简介
摘要中枢神经系统相关的恶性肿瘤,胶质母细胞瘤(GBM)是最常见的,死亡率最高。GBM细胞类型的高异质性和复杂的肿瘤微环境经常导致替莫唑胺治疗的患者的肿瘤复发和突然复发。在精确医学中,对GBM治疗的研究越来越集中于分子亚型,以精确表征细胞和分子异质性,以及GBM对治疗的难治性。对GBM亚型不同分子表达模式的深刻理解至关重要。研究人员最近提出了用于检测GBM分子亚型的四方分数或三方方法。GBM的各种分子亚型在基因表达模式和生物学行为上显示出显着差异。这些亚型在调节途径,癌基因表达,肿瘤微环境改变以及对标准疗法的差异反应中也表现出很高的可塑性。在此,我们总结了GBM的当前分子分型方案以及每个亚型的主要分子/遗传特征。此外,我们在各种调节剂下回顾了GBM的间充质转变机制。关键词胶质母细胞瘤;分子表型;分类;特征;间充质转变
粒子分类在各种科学和技术应用中起着至关重要的作用,例如在医疗保健应用中区分细菌和病毒或识别和分类癌细胞。此技术需要对粒子特性进行准确有效的分析。在这项研究中,我们通过多模式分类方法研究了电和光学特征的整合。使用机器学习分类器算法来评估结合这些测量值的影响。我们的结果证明了多模式方法比独立分析电气或光学特征的优越性。通过整合两种方式,我们实现了94.9%的平均测试精度,而单独的电气特征则达到66.4%,仅光学特征为90.7%。这突出了电气和光学信息的互补性及其提高分类性能的潜力。通过利用电气传感和光学成像技术,我们的多模式方法为粒子特性提供了更深入的见解,并对复杂的生物系统提供了更全面的了解。
摘要中枢神经系统相关的恶性肿瘤,胶质母细胞瘤(GBM)是最常见的,死亡率最高。GBM细胞类型的高异质性和复杂的肿瘤微环境经常导致替莫唑胺治疗的患者的肿瘤复发和突然复发。在精确医学中,对GBM治疗的研究越来越集中于分子亚型,以精确表征细胞和分子异质性,以及GBM对治疗的难治性。对GBM亚型不同分子表达模式的深刻理解至关重要。研究人员最近提出了用于检测GBM分子亚型的四方分数或三方方法。GBM的各种分子亚型在基因表达模式和生物学行为上显示出显着差异。这些亚型在调节途径,癌基因表达,肿瘤微环境改变以及对标准疗法的差异反应中也表现出很高的可塑性。在此,我们总结了GBM的当前分子分型方案以及每个亚型的主要分子/遗传特征。此外,我们在各种调节剂下回顾了GBM的间充质转变机制。关键词胶质母细胞瘤;分子表型;分类;特征;间充质转变
摘要:蛋白质tau的高磷酸化和聚集在阿尔茨海默氏病(AD)的发展中起关键作用。虽然丝状tau骨料的分子结构已确定为原子分辨率,但有关较小的可溶性聚集的可用信息却少得多,这些信息被认为更具毒性。传统技术仅限于大量措施,并难以鉴定复杂的生物样品中的单个聚集体。为了解决这个问题,我们开发了一种新型的单分子下拉测定法(MAPTAU),以检测和表征AD和控制后大脑和生物流体的单个TAU聚集体。使用map-tau,我们报告了使用超分辨率显微镜测量的TAU聚集体的数量以及圆形的大小和圆形性,从而揭示了Tau骨料形态的AD特异性差异。通过调整MAPTAU,使用两色重合检测来检测单个聚集体中的多个磷酸化标记,我们得出了单个凝集的组成曲线。我们发现,含有多种磷酸化的80%以上的tau聚集体的AD特异性磷酸化谱,而年龄匹配的非AD对照组为5%。我们的结果表明,MAPTAU能够鉴定出在不同位点磷酸化的Tau聚集物的特异性亚p,这些tau骨料在不同的地点是看不见的,这些方法对其他方法看不见,并能够研究疾病机制和诊断。
生物肥料是微生物 - 阿古罗产品,含有促进植物生长,产量,土壤质量和疾病控制的微生物混合培养物。这项研究旨在隔离,鉴定和筛选具有生物肥料潜力以在农场中应用的微生物。土壤样品是从港口哈科特大学附近的农田和废物降落的土壤中收集的。使用营养琼脂,马铃薯葡萄糖琼脂,cetrimide琼脂和Ashby的琼脂分离并估算各种微生物。使用Pikovskaya培养基筛选了基于氮固定,钾和磷酸盐溶解化的生物肥料电位的微生物。从这项研究中获得的结果表明,Thefarmland土壤样品的总异亲性细菌和真菌计数为5.045±0.02和4.220±0.02 log 10 cfu/g,而废物垃圾场中的相应值分别为4.890±0.30±0.30±0.30和3.505±0.30 log 10 cfu 10 cfu/g/g/g/g。筛选后,具有生物肥胖剂电位的微生物被确定为尼日尔曲霉,chrysogenum,Cereus bacillus cereus,Lichenoriformis,Pseudomonas荧光症和azotobobacter Chroococcum。这项研究的发现表明,从农田土壤中分离出的微生物比在废物降落土壤中的氮固定和溶解不溶性不溶性钾和磷酸化合物更熟悉。这些微生物以可持续的方式显示了提高土壤生育能力和作物生产力的潜力。
摘要 背景 免疫检查点抑制剂 (ICI) 组合疗法代表了一种新兴的癌症治疗策略。然而,它们对微卫星稳定 (MSS) 或错配修复功能良好 (pMMR) 的结直肠癌 (CRC) 的疗效存在差异。本文,我们进行了多组学表征,以确定与 MSS/pMMR CRC 患者对 ICI 组合疗法反应相关的预测性生物标志物,以便进一步开发 ICI 组合疗法。方法 对在临床试验中接受瑞戈非尼联合纳武单抗 (REGONIVO) 或 TAS-116 联合纳武单抗 (TASNIVO) 治疗的 MSS/pMMR CRC 患者的肿瘤进行全外显子组测序、RNA 测序和多重荧光免疫组织化学分析。本研究纳入了来自 REGONIVO 和 TASNIVO 试验的 22 名和 23 名未接受过 ICI 治疗的患者。我们使用来自每项研究的样本进行了生物标志物分析。结果:在 REGONIVO 应答组,上皮间质转化通路和癌症相关成纤维细胞相关基因上调,在 TASNIVO 应答组,G2M 检查点通路上调。在 REGONIVO 无应答组,MYC 通路上调。在 REGONIVO 试验中,共识分子亚型 4 与应答 (p=0.035) 和更长的无进展生存期 (p=0.006) 显著相关。在 REGONIVO 试验应答组中,CD8 + T 细胞、调节性 T 细胞和 M2 巨噬细胞密度显著高于无应答组。在 TASNIVO 试验中,POLE 基因突变与患者应答显著相关;然而,在两项试验中,应答者和无应答者之间其他突变的频率或肿瘤突变负荷均无显著差异。结论:我们鉴定了与 REGONIVO 和 TASNIVO 疗效相关的分子特征,尤其是与肿瘤微环境因素相关的特征。这些发现可能有助于开发预测治疗效果的生物标志物。
根据欧洲食品安全局的独立性政策 2 和执行董事关于利益冲突管理的决定 3,欧洲食品安全局审查了受邀参加本次会议和议程第 6 项下所列筹备会议的工作组成员填写的年度利益声明。在审查过程中未发现与这些会议中讨论的问题相关的利益冲突,且成员在本次会议开始时未口头声明任何利益。
抽象背景免疫检查点抑制剂已被批准,目前用于复发和转移性头颈部鳞状细胞癌(R/M HNSCC)患者的临床管理。临床试验中报告的益处是可变且异质性的。我们的研究旨在探索和比较在多中心IIIB试验中,基因表达特征与经典生物标志物与经典生物标志物用于免疫治疗治疗的R/M HNSCC患者。方法在Nivactor Tiral(单臂,开放标签,多中心,IIIB期临床试验中,用Nivolumab治疗的铂 - 难治性HNSCC中)前瞻性地收集了临床数据。的发现在免疫治疗的HNSCC患者的外部独立队列中得到了验证,该患者分为长期和短期幸存者(分别自免疫疗法开始以来的总生存率> 18和<6个月)。来自免疫治疗治疗的R/M HNSCC患者的预处理肿瘤组织标本用于PD-L1(肿瘤比例得分;联合阳性评分(CPS))和肿瘤突变负担(Oncopanel TSO500)评估和基因表达分析;在Nivactor数据集中挑战了经典的生物标志物和免疫特征(从文献中检索)。结果集群-6(CL6)在高分(n = 16,20%)和低分(n = 64,80%)中对Nivactor病例的分层表明,在高分中,总体存活率具有统计学意义和临床意义,在高分中的总生存率有所改善(P = 0.00028; HR = 0.00028; hr = 4.34,95%ci 1.84至10.22)= 0.2.2.22 cy toction nucde cy decter and ci ci 1.84至10.22)均可及时范围。 (95%CI 0.603至0.967)。在多元COX回归分析中,Cl6是独立的高得分CL6与更好结果的关联也在:(1)Nivactor无进展生存期(p = 4.93e-05; HR = 3.71,95%CI 1.92至7.18)和目标反应率(AUC = 0.785; 95%CI 0.603至0.9603至0.967); (2)长期幸存者与短期幸存者(p = 0.00544)。
大多数生物表面活性剂产生的微生物都是碳氢化合物降解剂。进行了研究,以分离和表征尼日利亚原油污染土壤中产生生物表面活性剂的细菌。从原油污染的土壤中分离出产生生物表面活性剂的细菌。原油污染的土壤,并进行了理化分析。细菌,并筛选出生物表面活性剂的产生。使用形态学,生化和分子方法鉴定出表现出产生生物表面活性剂能力的生物体。土壤的理化参数显示为pH 6.9,电导率为71.5,2.55%碳,2.016%的氮和5.98%的磷。生物表面活性剂测试的值表明生物表面活性剂的生产阳性。两个选定生物S2和S13的乳液指数的百分比分别为59.09%和57.14%。来自分子鉴定的爆炸分析表明,S2和tsukamurella inochensis的孤立生物是S13的S2和Tsukamurella inochensis的Gordonia Alkanivorans。这项研究表明,在原油污染的土壤中,孤立的生物表面活性剂产生的细菌很丰富。