尽管在CMS上应用神经生物电子设备设计是一种概念证明,但显然,对于CAR-DIAC模型而言,需要进一步优化,并且需要对CMS的特定生理特征进行生物电子网格设计的修订。为了增强网状生物电子设备的鲁棒性并优化了专门针对CMS的网格脚手架设计,我们完善了所选的色带宽度(30-60µm),从而减少了丝带之间的间距,以提高细胞接近性,并增加设备厚度,以提高刚度(5ppss vs. 0.5ppa vs. 0.5ppa)和交接。这些修饰显着改善了细胞对设备的相互作用,促进了细胞伸长和附着。未来的工作将评估新设备的几何形状和刚度对CMS钙处理的影响。这些初步结果表明,我们的生物电子平台在创建用于再生医学的心脏组织模型方面表现出了希望,这可能提供了用于心血管疾病疗法的新途径。利益冲突不适用
数据表https://www.asix.com.tw/en/product/industructialethernet/ethercat/ax58100 https://www.asix.com.tw/en/product/product/industrustialetialethert/industrialethernet/EtherEthernet/EtherCat/EtherCat/Ax58200 https://www.asix.com.tw/en/product/industrialethernet/ethercat/ethercat/ax58400 https://www.analog.com.com/en/products/products/tmc8462.htmc8462.htmc8462.html wwwwwwwwwwwwwww.anybus.com/www.anybus.com/downloads/downloads/mmma318181820ccomp; https://www.hilscher.com/fileadmin/cms_upload/en-us/resources/pdf/netx-100-500_datasheet_10-2009_gb.pdf https://www.hilscher.com/fileadmin/cms_upload/en-us/resources/pdf/netx-51_datasheet_11-2014_gb.pdf https://www.hilscher.com/fileadmin/cms_upload/en-us/resources/pdf/netx-52_datasheet_11-2014_gb.pdf https://www.hilscher.com/fileadmin/cms_upload/en-us/resources/pdf/netx-90_datasheet_10-2019_gb.pdf https://www.hilscher.com/fileadmin/cms_upload/en-us/resources/pdf/netx-100-500_datasheet_10-2009_gb.pdf
我们之前的工作(Nieman 等人 (2022))是对量子计算机上控制器实现的初步研究,重点研究量子计算机的独特操作如何影响过程操作和安全性。我们专门研究了基于 Lyapunov 的经济模型预测控制 (LEMPC) 的理论(请注意,可以考虑许多其他控制框架,我们选择 LEMPC 作为本主题的初步研究,因为它在存在干扰的情况下具有闭环稳定性保证)。LEMPC 是一种解决优化问题的控制律,受过程模型和约束的制约(Heidarinejad 等人 (2012))。在 Nieman 等人 (2022) 中,我们证明了在存在由舍入引入的离散化的情况下(在充分条件下),可以确保闭环稳定性,这可能是由于现代量子计算机的规模有限而引入的。
最新的动力和符合微电子制造的进展为健康监测和疾病治疗开辟了机会。其他材料工程的进步,例如导电,皮肤样水凝胶,液体金属,电动纺织品和压电薄膜的开发提供了安全舒适的方式,可以与人体接口。一起,这些进步使具有集成的多模式感应和刺激能力的生物电子设备的设计和工程能够在身体上的任何地方佩戴。在这里特别感兴趣的是,外耳(耳膜)提供了一个独特的机会来设计具有高度可用性和熟悉程度的可扩展生物电子设备,鉴于耳机的广泛使用。本评论文章讨论了能够生理和生物化学感应,认知监测,靶向神经调节以及对人类计算机相互作用的控制的耳朵生物电子设备开发的最新设计和工程进步。从这个可扩展的基础上讲,研究和工程的增长和竞争将增加,以推动耳态生物电子学。这项活动将导致患者和消费者对这些智能耳机式设备的采用增加,以跟踪健康,治疗医疗状况以及增强人类计算机的相互作用。
在伤口愈合过程中,电信号在细胞对组织损伤的反应中起着至关重要的作用,外部电场 (EF) 可以加速愈合过程。在这里,我们开发了一种独立的、可穿戴的、可编程的电子设备来管理良好控制的外源性 EF,旨在加速体内小鼠模型中的伤口愈合,以提供临床前证据。我们通过组织学染色评估上皮化率和 M1/M2 巨噬细胞表型的比率来监测愈合过程。经过三天的治疗,M1/M2 巨噬细胞比率下降了 30.6%,与对照组相比,EF 治疗伤口的上皮化趋势呈非统计显著的 24.2% 增加。这些发现表明该装置通过促进修复性巨噬细胞而非炎性巨噬细胞来缩短炎症期,并加速上皮化。我们的可穿戴设备支持将程序化 EF 应用到体内伤口管理的理论基础,并为进一步开发基于调节巨噬细胞和炎症以更好地愈合伤口的技术提供了令人兴奋的基础。
摘要:激子极化子代表了一种有前途的平台,它结合了光子和电子系统的优势,可用于未来的光电设备。然而,由于制造方法成本高、复杂,与为微电子开发的成熟 CMOS 技术不兼容,因此它们的应用目前仅限于实验室研究。在这项工作中,我们开发了一种创新、低成本且与 CMOS 兼容的方法来制造大表面极化子设备。这是通过热纳米压印直接图案化卤化物钙钛矿薄膜来实现的。结果,我们在室温下观察到厘米级上质量因子 Q ≈ 300 的高度均匀的极化子模式。令人印象深刻的是,该工艺提供了高可重复性和保真度,因为同一个模具可以重复使用 10 次以上,以将钙钛矿层压印在不同类型的基板上。我们的研究结果可以为生产在室温下运行的低成本集成极化子设备铺平道路。
许多最近开发的无线皮肤界面生物电子设备都依赖于传统的热固性有机硅弹性体材料,例如聚二甲基硅氧烷 (PDMS),作为电子元件、射频天线和常见的可充电电池的软封装结构。在优化的布局和设备设计中,这些材料具有吸引人的特性,最突出的是它们即使在曲率高和自然变形较大的区域也能与皮肤形成温和、无创的界面。然而,过去的研究忽视了开发这些材料变体以进行多模式操作的机会,以增强设备对从机械损坏到热失控等故障模式的安全性。这项研究提出了一种自修复 PDMS 动态共价基质,其中嵌入了化学物质,可提供热致变色、机械致变色、应变自适应硬化和隔热,作为与安全相关的属性集合。该材料系统和相关封装策略的演示涉及一种无线皮肤界面设备,该设备可捕获健康状况的机械声学特征。这里介绍的概念可以立即应用于许多其他相关的生物电子设备。
生物电子设备在从生物标志物传感、癌症和癫痫诊断到血糖监测和脑活动记录等许多领域都至关重要。1–3 然而,许多(如果不是大多数)用例,特别是那些必须在生物系统中不可避免的复杂流体环境中发生的用例,都会受到由于化学和生物材料在设备表面非特异性吸附而发生的污染的负面影响。因此,人们付出了大量的努力4来开发保护生物电子设备长期功能的防污策略(图1)。在本研究更新中,我们讨论了一般的防污原理和主要的污染机制,并给出了一些目前用于防止污染物结合到设备表面并在发生污染后将其去除的策略的示例。污染,特别是生物污染,经历四个不同的阶段。5 首先,原始表面被一层小分子的调节层覆盖;在第二阶段,调节层被主要污垢层覆盖;在第三阶段,污垢表面会受到生物膜的强烈生长;最后,该生物膜进一步发展为宏观污垢。6 糖或其他小分子对调节层的吸附通常发生在
抽象可穿戴的生物电子设备正在迅速发展到小型化和多功能性,具有弹性和舒适性等显着特征。但是,为可穿戴生物电子设备实现可持续的电源仍然是一个巨大的挑战。Triboelectric纳米生成剂(TENGS)通过将不规则的低频生物能源从人体转化为电能,从而提供了有效的解决方案。除了可持续的可穿戴生物电子药物外,收获的电能还提供了丰富的人体感测信息。在此转换过程中,材料的选择在影响tengs的输出性能中起着至关重要的作用。在各种材料中,有机硅橡胶(SR)由于其出色的可塑性,灵活性,舒适性和其他有利的特性而脱颖而出。此外,通过适当的治疗,SR可以实现极端功能,例如稳健性,良好的稳定性,自我修复能力,快速响应等等。在这篇综述中,系统地审查了基于可穿戴SR的Tengs(SR-Tengs)的最新进展,重点是他们在人体不同部位的应用。鉴于SR-Tengs的制造方法在很大程度上决定了其输出性能和敏感性,因此本文介绍了SR-Tengs的设计,包括材料选择,过程调制和结构优化。此外,本文讨论了当前
无线血管内神经刺激用毫米大小的磁电植入物Joshua C. C. C. C. C. C. C. C. C. C. C. C. C. C. C. C. C. C. C. C. 2,Zhanghao Yu* 3,Fatima Alrashdan 3,Roberto Garcia 2Edwin Lai 1,Ben Avants 3,Scott Crosby 5,Michelle M. Felicella 6,Ariadna Robledo 2,Jeffrey D. Hartgerink 1,7,Sunil A. Sheth ** 8,Kaiyuan Yang ** 3,雅各布·T·罗宾逊(Jacob T. Robinson)美国德克萨斯州加尔维斯顿市德克萨斯大学医学分公司神经外科3号电气与计算机工程系,赖斯大学,美国德克萨斯州休斯敦市,美国4号应用物理学计划,赖斯大学,德克萨斯州休斯敦,美国5 NeuroMonitoring Associates,LLC 6. LLC 6年病理学系6.美国德克萨斯州休斯敦市Uthealth McGovern医学院9.美国德克萨斯州休斯顿市贝勒医学院神经科学系 *联合首先作者:J.C.C.,P.K.,P.K.,Z.Y。; **相应的作者:J.T.R,K.Y。S.A.S. 抽象植入的生物电子设备有可能治疗对传统具有抗性的疾病S.A.S.抽象植入的生物电子设备有可能治疗对传统