电力电子标准 AEG PS Tours 设备是根据下列 IEC 标准的适用部分设计和制造的。IEC/EN60051 电气测量仪器。IEC/EN60068 环境测试。IEC/EN60073 指示灯和按钮的颜色。IEC/EN60076 电力变压器。IEC/EN60529 低压开关设备和控制设备外壳的防护等级 IEC/EN60146 半导体转换器。IEC/60157 低压配电设备。IEC 60158 低压控制设备。IEC/EN60044-1 电流互感器。IEC 60186 电压互感器。IEC/EN60204 工业机械电气设备。IEC/EN60228 绝缘电缆导体。IEC/EN60255 电气继电器。IEC/EN60269 低压保险丝。 IEC/EN60289 电抗器。IEC/EN60384 电子设备用固定电容器。IEC/EN60439 低压开关设备和控制设备组件。IEC/EN60445 设备端子识别和统一端子标记系统的一般规则。IEC/EN60446 通过颜色识别绝缘导体和裸导体。IEC 60478 稳定电源直流输出。IEC/EN60598 灯。IEC/EN60417 设备用图形符号。IEC/EN60617 图表用图形符号。IEC 60750 (1983) 由 IEC 61346 (1996) 取代。IEC 61346 工业系统、装置和设备及工业产品 - 结构原则和参考名称第 1 部分:基本规则;第 2 部分:物体分类和类别代码 EN 50178 电力装置用电子设备。EN 55011 工业、科学和医疗射频设备的无线电干扰特性的限值和测量方法。EN50272-2 二次电池和电池装置的安全要求。EN 60947 低压开关设备和控制设备(断路器、开关、接触器)。NF C58-311 蓄电池充电器类型测试程序。
功能蛋白与微透明剂的精确和高分辨率耦合对于制造微型生物电子设备至关重要。此外,微电极的电化学对电化学分析和传感器技术产生了重大影响,因为微电极的尺寸较小会影响分析物的径向扩散通量,从而提供了增强的质量传输和电极动力学。然而,与这种微电子相关的工艺技术与通常使用的召集生物结合技术之间存在了巨大的技术差距。在这里,我们使用溶剂辅助的蛋白质 - 麦克塞尔吸附印刷(GPS)进行了高分辨率和快速的几何蛋白自我图案(GPS)方法,以将夫作生物分子送到微电源上,以最小特征大小为5μm,并且打印时间约为一分钟。GPS方法用于微观的多种生物分子,包括酶,抗体和抗生物素生物素化的蛋白质,可提供良好的几何比对并保留生物学功能。我们进一步证明,用于葡萄糖检测的酶偶联的微电极表现出良好的电化学性能,从GPS方法中受益,可以最大程度地提高生物接口处有效的信号转导。这些微电极阵列保持了快速收敛分析物扩散,显示典型的稳态I - V特性,快速响应时间,良好的线性灵敏度(0.103 Na mm-2 mm-2 mm-1,r 2 = 0.995)和超宽线性动态范围(2 - 100 mm)。我们的发现为生物分子与微电体阵列的精确耦合提供了一种新的技术解决方案,对诊断,生物燃料细胞和生物电机设备的规模和生产具有重要意义,这些设备无法经济地实现其他现有技术。
Arnav Kapur 麻省理工学院 15,000 美元 “用它!” Lemelson-MIT 学生奖毕业生获得者 AlterEgo,一种非侵入性外周神经计算机接口和 ISGEC(计算机基因表达构建),一个可定制的基因表达测量平台 挑战:计算机和人工智能一直被视为外部实体或代表我们进行计算和行动的外部黑匣子设备。问题是,我们能否颠倒过来,将人类和计算机(人工智能)结合为一个实体,以增强人类的认知和能力,而不是依赖将我们与环境隔离开来的外部接口?仅在美国,就有超过 750 万人在患病或受伤后患有言语障碍。1然而,最常用的可以让这些患者更好地沟通的系统效用有限。符号集(印有字母、单词或图标的纸张)和一种称为稳态视觉诱发电位 (SSVEP) 的过程(将字符应用于显示器上,用户通过眼球运动进行选择)既难以使用,又会导致令人沮丧的缓慢交流,因为用户通常一次只能选择一个字符。因此,患有言语障碍的人往往无法实时分享他们的想法和观点。解决方案:Arnav 的主要发明 AlterEgo 是一个由三部分组成的感官和听觉反馈系统。第一部分使用来自内部语音系统的微妙神经肌肉信号来提取语音。当我们大声说话时,我们的大脑会将电信号传输到 100 多块肌肉和声带以产生语音。当我们在内心对自己说话时,通过非常微妙地只使用我们的内部语音系统,神经信号就会被发送到这些内部系统。从皮肤表面,AlterEgo 能够检测到来自口腔深处的这些信号,并理解一个人想要说什么。系统的第二部分传输从电信号中收集的信息,并将其发送到在后台运行在设备上的人工智能代理。人工智能代理理解数据并准备响应以供音频反馈系统投射。设备的第三部分是双重的。用户可以通过
HIPATIA(用于太空应用的 Helicon PlasmA 推进器)项目最近获得了欧洲委员会 H2020 拨款,用于开发 Helicon Plasma 推进器及其相关技术。HIPATIA 项目的目标是验证基于 HPT 技术的电力推进系统的功能和性能,以应用于非地球静止卫星星座和其他小型航天器。该联盟由 SENER Aeroespacial 牵头,马德里卡洛斯三世大学、空中客车防务与航天公司、法国国家科学研究中心和先进空间技术公司也参与其中。合作伙伴为 HIPATIA 带来了电力推进 (EP) 系统开发、集成和测试方面的坚实背景。 HPT 是一种射频等离子推进技术,有望提供良好的性能水平,同时消除迄今为止困扰 EP 系统的许多设计和制造问题(电极、高压电子设备和复杂制造)。鉴于 HPT 技术的设计相对简单而坚固(没有栅极和阴极),HIPATIA 有可能为大型小型卫星群提供经济高效的解决方案。除非完整的 EP 系统已证明其集成和操作一致性,否则高 TRL 中破坏性推力器的影响不会实现。HIPATIA 将把 HPT 的开发状态推进到 TRL6-7,但它也将面临完整 EP 系统的集成挑战,该系统由 HPT 推力器单元 (TU)、为其供电的射频和电源单元 (RFGPU) 和控制推进剂压力和质量流量的推进剂流量控制单元 (PFCU) 组成。该系统将根据市场需求进行集成和验证。开发活动将辅以研究和实验任务,以提出设计行动来提高 HPT 性能。本文回顾了小型平台太空推进的市场需求,分析了对基于 HPT 的推进子系统的需求和要求。将讨论 HIPATIA 项目中要开发和集成的技术的现状。从这一点开始,本文探讨了联盟在 2022 年将基于 HPT 的推进子系统提升到 TRL6 的研究和开发计划。关键词:螺旋等离子推进器、HIPATIA、H2020。
本书旨在概述与半导体材料中的纳米科学和纳米技术相关的基本物理概念和设备应用。如书中所示,当固体的尺寸缩小到材料中电子的特征长度(德布罗意波长、相干长度、局域长度等)的大小时,由于量子效应而产生的新物理特性就会显现出来。这些新特性以各种方式表现出来:量子电导振荡、量子霍尔效应、共振隧穿、单电子传输等。它们可以在正确构建的纳米结构中观察到,例如半导体异质结、量子阱、超晶格等,这些在文中详细描述。这些量子结构所表现出的效应不仅从纯科学的角度来看意义重大——过去几十年来它们的发现者获得了数项诺贝尔奖——而且在大多数上一代微电子和光电子设备中也有重要的实际应用。 20 世纪 70 年代初,IBM 的 Esaki、Tsu 和 Chang 开创性地开展工作,为后来在量子阱和超晶格中观察到的许多新效应奠定了基础,从那以后,仅仅过去了 30 年左右。为了观察这些效应,20 世纪 80 年代,许多先进的研究实验室定期采用分子束外延、逐层生长和半导体纳米结构掺杂等先进技术。由于所有这些新发展都发生在相对较短的时间内,因此很难及时将它们纳入大学课程。然而,最近大多数一流大学都更新了课程,并在研究生和本科生阶段开设了以下课程:纳米科学与工程、纳米结构与设备、量子设备和纳米结构等。甚至还开设了纳米科学与工程硕士学位。物理学院、材料科学学院和各种工程学院(电气、材料等)经常开设这些课程。我们认为,在普通本科阶段,缺乏关于纳米科学和纳米技术的综合教科书。一些关于固体物理学的一般教科书开始包括几个部分,在某些情况下,甚至包括一整章,来介绍纳米科学。这些材料经常被添加为这些著名教科书新版本的最后一章,有时并没有真正将其整合到书的其余部分中。然而,对于可以部分用于研究生课程的专业书籍来说,情况要好一些,因为在过去的十五年里,一系列关于纳米科学的优秀教科书
早期训练,可用于增强/虚拟现实的exoskele-tons,假肢和交互式系统。[1–9] The continuous operation of these systems is juxtaposed with the reliable and sus- tainable energy sources, currently met through: a) energy harvesters based on mechanisms such as photovoltaics, [10–13] piezoelectricity, [14–16] triboelectricity, [14,17–19] and theremoelectricity, [20–22] etc.; b)诸如锂离子电池(LIB)[23-27]和超级电容器(SCS),[28-35]等的储能设备等。; c)延长电池寿命的低功率或附近的州外电子设备和算法,[36,37]等。(图1 A)。改编这些技术,各种可穿戴的物理,化学,生物和光学传感器,[3,33,38-43]近年来报告为自供电或能量自动造型,[15,33,44-47]可以依靠能量代理,[21,33,48–51] ElectroCeest(21,48–51] ElectroChemical(Elephemical), [3,26,31–35,44,52,53,55-57]无线功率技术,[58–60]自动力传感器,[15,33,44-47]和结合能量生成器和EES的混合能源系统。[61]几篇评论文章详细介绍了这些技术,[47,62-68]在各自的主题中,例如自供电的Bioseners,[69]自动医疗传感器,[70]基于酶的体内设备,[71]和其他环境技术。[72]然而,很少有人关注生物相容性,安全性和潜在的环境影响这种能源自治系统,这是一个引起人们越来越多的利益的话题。许多当前的能量设备都使用有毒的材料和电解质,因为佩戴这些设备的个人的安全至关重要。使用可穿戴技术的激增以及同时朝零废物,可持续的信息和通信技术以及电子废物回收的同时推动,要求使用可持续材料来满足未来的能源需求。[73–75]在磨损的情况下,还有其他关于生物相容性的要求,以及允许可穿戴能力的新型形式(例如,伸展能力,灵活性,可洗)。例如,包括钴和镍以及易燃电解质(LIBF 4,LIPF 6,LICLO 4)在内的重金属的存在会引起毒性和污染。fur,在有机溶液和电极表面的反应过程中产生热量,这对磨损是有害的。[76]在这方面,由于其丰富的成分(图1b)用于能量发电的新方法,[40,77]储能,[35,78,79]和感应[80-82](图1C)被认为是非常有吸引力的,因为它们的整合可能会导致完全的能量能量磨损系统。本评论文章介绍了基于汗液的设备的详细分析
美国专利 9759862 绝热/非绝热偏振分束器 美国专利 9748429 具有减少暗电流的雪崩二极管及其制造方法 美国专利 9740079 集成光学。具有电子控制光束控制的收发器 美国专利 9696492 片上光子-声子发射器-接收器装置 美国专利 9612459 带有微加热器的谐振光学装置 美国专利 9467233 功率计比率 稳定谐振调制器的方法 美国专利 9488854 高速光学相移装置 美国专利 9391225 二维 APD 和 SPAD 及相关方法 美国专利 9366822 具有同时电连接和热隔离的热光调谐光子谐振器 美国专利 9329413 高线性光学调制的方法和装置 美国专利 9268195 使用四波混频产生纠缠光子的方法和装置 美国专利 9268092 导波光声装置 美国专利 9261647在半导体波导和相关设备中产生应变 美国专利 9239431 通过热机械反馈实现谐振光学设备的无热化 美国专利 9235065 适用于差分信号的热可调光学调制器 美国专利 9128308 低压差分信号调制器 美国专利 9127983 用于控制工作波长的系统和方法 美国专利 9083460 用于优化半导体光学调制器操作的方法和设备 美国专利 9081215 硅光子加热器调制器 美国专利 9081135 用于维持光子微谐振器谐振波长的方法和设备 美国专利 9063354 用于稳健无热光子系统的被动热光反馈 美国专利 9052535 电折射光子设备 美国专利 8947764 高速光子调制器设计 美国专利 8822959 光学相位误差校正方法和装置 美国专利 8625939 超低损耗腔和波导散射损耗消除 美国专利 8615173 集成谐振光学装置波长主动控制系统 美国专利 8610994 具有减小的温度范围的硅光子热移相器 美国专利 8600200 纳米光机械换能器 美国专利 8027587 集成光学矢量矩阵乘法器 美国专利 7983517 波长可调光环谐振器 美国专利 7941014 具有绝热变化宽度的光波导装置 美国专利 7667200 热微光子传感器和传感器阵列 美国专利 7616850 波长可调光环谐振器
生物电子学可以在组织和设备界面上传导信号,以测量和调节用于医疗保健监测和疾病治疗的生物学活动。当前,广泛使用了多种生物电子设备,例如胶状传感器,心脏起搏器和静电图。然而,由于体内的机械菌株和复杂的生物流体,传统的刚性电子设备无法有效地满足长期舒适性,预先限制和稳定性的要求。在过去的几年中,以可穿戴的纺织品的形式越来越兴趣柔性和可拉伸的生物电子学,可穿着的皮肤和植入物内部,旨在遵守非平面和动态组织。因此,我们很高兴在先进的功能伴侣上组织这一特殊问题。我们在这里强调了材料,结构,功能和界面,用于软性生物电子学,收集了6份评论,1个进度报告和11篇令人兴奋的领域的文章。传统的电子设备通常是刚性,平面,干燥和静态的,而生物组织则是柔软,曲线,离子和动态的,因此应设计新材料以减少这些差异以建立有效且可靠的接口。pooi参见李和同事(文章1907184),小陈和同事(文章编号1909540),以及穆里米塔·科塔尔(Moumita Kotal)和伊尔克万(Moumita Kotal)和伊尔克万(Ilkwon)和同事(文章1910326)讨论了expermal and oblavelable and car的基础,并讨论了car的基础和材料设计。纳米材料,用于导电聚合物和水凝胶。还解决了体内生物电子学长期稳定性的挑战。除了材料外,设备结构和实施技术还广泛研究以减少组织损伤并提供长期的信号稳定性,主要进步和代表性的例子由Fei Pei和Bozhi Tian(文章编号1906210)和Kyung-In Jang-In Jang and Taeyoon Lee和Taeyoon Lee和Co-Workers(文档编号1910026)仔细强调。传感器是探索最多的生物电子设备的一种类型。对于触觉传感器,Darren J. Lipomi和同事(文章编号1906850)报告了触觉设备的刺激性有机材料的开发。Zhenan Bao及其同事(文章编号1903100)通过使用金字塔微结构设计,提出了一种可调,一致和可再现的电容压力传感器的有效方法。
2英国牛津大学牛津大学牛津大学综合生物学培训中心3英国牛津大学生物化学系4对这项工作 *相当贡献 *通讯作者摘要的生物电子设备,这些设备是无绳和软的,在医学,机器人和化学计算中的开发项目的前线。在这里,我们描述的是生物启动的合成神经元,完全由柔软的柔性生物材料组成,能够在厘米距离内快速电化学信号传递。像天然细胞一样,我们的合成神经元从其末端释放神经递质,从而启动下游反应。神经元的成分是通过脂质双层连接的纳米液水滴和水凝胶纤维。传输是通过轻驱动泵向上游双层驱动的,并通过离子传导蛋白孔介导。通过将多个神经元捆绑成合成神经,我们表明不同的信号可以同时沿平行轴突传播,从而传递时空信息。合成神经可能在下一代植入物,软机器和计算设备中起作用。引言生物电子学的新兴领域主要集中于可植入和可穿戴的医疗设备的开发,这些设备可调节目标组织的生物电活性以产生治疗作用1-5。类似的技术正在加速机器人技术6,7和计算设备8-12的进度。然而,由于其僵硬的电极阻碍,传统设备尚未发挥其全部潜力。机械性能不是生物电子学所面临的唯一问题。这种电极通常会随着时间的流逝而降解,从而导致与活细胞的通信失去。此外,刚性电极材料,例如金属,产生较差的设备 - 组织界面,导致细胞的不加区分靶向,组织损伤3。解决这些局限性的努力涉及用软或生物组件13,14封装电极,或者专注于电极微型化和提高的柔韧性4,13。然而,这种修改无法改变这些材料的固有机械性能,这意味着它们仍然太僵硬,无法满足生物组织的机械要求3。常规电极仅限于使用电脉冲(场和电流)作为活细胞检测的信号2,4。但是,在细胞通信中,信号在很大程度上基于离子和分子的释放15,16。通过用软电极材料(例如导电17-20)替换设备中的传统电极来取得进展。随着生物相容性和柔韧性的改善,由这些材料构建的设备涉及许多常规技术的固有局限性。例如,软电极材料已被用于介导离子信号传导,从而提供了与组织20-22的增强界面,但到目前为止的方法已经是
摘要:二维过渡金属二甲藻元化半导体(2D TMD)的光电和转运性能非常容易受到外部扰动的影响,从而可以通过后体系修饰来精确地定制材料功能。在这里我们表明,纳米级不均匀性称为纳米泡得很不均匀,可用于菌株,而在双层二硫化物中,激发激子转运的介电调节(WSE 2)。我们使用超敏感的空间分辨的光学散射显微镜直接对激子的传输进行成像,这表明介电纳米泡在室温下在漏斗和捕获激子的效率上非常有效,即使明亮的激子的能量受到了忽略的影响。我们的观察结果表明,电介质不均匀性中的激子漏斗是由动量 - 间接(黑暗)激子驱动的,这些激动型(黑暗)激子的能量比明亮的激子对介电扰动更敏感。这些结果揭示了使用深色态能量景观的介电工程进行特殊空间和能量精确的2D半导体中控制激子传输的新途径。主要文本:二维过渡金属二甲藻元化半导体(2D TMD)是范德华的材料,由于其强烈的光 - 含量相互作用,即使在原子上薄的限制下,它们也对纳米级光电构成了巨大的希望。2D TMD的光电特性在很大程度上受其库仑结合的电子孔对(激子)的控制,其结合能相对较大,高达数百个Milli-Electronvolts(MEV),这是由于平面外介电介质筛选而导致的。1–6与自由电荷不同,激子是电荷中性的,因此很难用电子设备中的外部电场来操纵。7–9因此,激子的传输特性在很大程度上取决于随机的扩散运动,没有远程方向性,从而限制了它们作为信息和能量载体的使用。寻找在2D TMD中操纵激子传输的新方法,而不会根本改变其他材料特性,这将产生激子设备,这些设备结合了强烈的光结合,并精确地控制了原子上薄材料中能量和信息流的精确控制。控制2D TMD的特性的一种有吸引力的途径是利用其对菌株,10–21和环境筛查等外在因素的极端敏感性(图1A),5,22-26,实现对光电和运输特性的合成后调节。例如,拉伸应变减少了2D TMD的光学过渡能;因此,16,18,27,28个局部应变区域会产生能量梯度,可以在纳米级低能部位漏洞和捕获激子,该过程被利用以创建长寿命的量子发射器。14,29–33菌株工程很难控制宏观尺度,并且可能引入不良疾病。