在错误校正后的逻辑Qubits上执行量子算法是可扩展量子计算的关键步骤,但是对于当前的实验硬件,Qubits和物理错误率的必要数量和物理错误率要求。最近,针对特定物理噪声模型量身定制的错误纠正代码的开发有助于放松这些要求。在这项工作中,我们为171 yb中性原子量子A的量子编码和栅极协议提出了将主要物理误差转换为擦除,即已知位置的错误。关键思想是在亚稳态的电子水平上编码Qubits,以便门错误主要导致向不相交子空间的过渡,这些子空间可以通过荧光连续监测其种群。我们认为,98%的错误可以转换为擦除。我们通过表面代码的电路级模拟量化了这种方法的好处,从而发现阈值从0.937%增加到4.15%。我们还观察到阈值附近的较大代码距离,从而使相同数量的物理量子位的逻辑错误率更快降低,这对于近期实现非常重要。擦除转换应有益于任何错误纠正代码,并且还可以应用于在其他Qubit平台中设计新的门和编码。
在量子处理器中,在所需量子比特之间设计并行、可编程操作的能力是构建可扩展量子信息系统的关键 1,2 。在大多数最先进的方法中,量子比特在本地交互,受与其固定空间布局相关的连接的限制。在这里,我们展示了一种具有动态、非局部连接的量子处理器,其中纠缠的量子比特在两个空间维度上以高度并行的方式在单量子比特和双量子比特操作层之间相干传输。我们的方法利用光镊捕获和传输的中性原子阵列;超精细态用于稳健的量子信息存储,激发到里德堡态用于纠缠生成 3–5 。我们使用这种架构来实现纠缠图状态的可编程生成,例如簇状态和七量子比特 Steane 码状态 6,7 。此外,我们穿梭纠缠辅助阵列,以实现具有十三个数据和六个辅助量子比特的表面代码状态 8 以及具有十六个数据和八个辅助量子比特 9 的环面上的环面代码状态。最后,我们利用这种架构实现了混合模拟 - 数字演化 2 ,并将其用于测量量子模拟中的纠缠熵 10-12 ,通过实验观察与量子多体疤痕相关的非单调纠缠动力学 13,14 。这些结果实现了长期目标,为可扩展量子处理提供了一条途径,并实现了从模拟到计量的各种应用。
快速扰乱器是动态量子系统,可在随系统规模 N 呈对数增长的时间尺度上产生多体纠缠。我们提出并研究了一类确定性的快速扰乱量子电路,可在近期实验中用中性原子阵列实现。我们表明,三种实验工具——最近邻里德堡相互作用、全局单量子比特旋转和由辅助镊子阵列促进的换位操作——足以生成非局部相互作用图,这些图仅使用 O(log N)个并行最近邻门应用即可扰乱量子信息。这些工具能够以高度可控和可编程的方式直接通过实验访问快速扰乱动力学,并可利用它们来产生具有各种应用的高度纠缠态。