van der waals异质结构中的Moiré超级晶格代表了高度可调的量子系统,在多体模型和设备应用中都引起了极大的兴趣。然而,在室温下,Moiré电位对光物质相互作用的影响在很大程度上仍然没有。在我们的研究中,我们证明了MOS 2 /WSE 2中的Moiré潜力促进了室温下层间激子(IX)的定位。通过执行反射对比光谱,我们证明了原子力显微镜实验支持的原子重建在修饰内部激子中的重要性。降低扭转角时,我们观察到IX寿命会更长,并且发光增强,表明诸如缺陷之类的非辐射衰减通道被Moiré电位抑制。此外,通过将Moiré超晶格与硅单模腔的整合,我们发现,使用Moiré捕获的IXS的设备显示出明显较低的阈值,与利用DelaCalized IXS的设备相比,较小的一个数量级。这些发现不仅鼓励在升高温度下在Moiré超晶格中探索多体物理学,而且还为利用光子和光电应用中的这些人工量子材料铺平了道路。
摘要:心脏外流(OFT)中的异常是最常见的先天性心脏缺陷(CHD)之一。在胚胎发生过程中,心脏OFT是心脏动脉极的动态结构。心脏管伸长通过添加来自咽部,中胚层到两端的细胞。这些祖细胞被称为第二心脏(SHF),是20年前首次识别为对形成心管的生长和OFT的主要贡献者的生长至关重要。SHF开发的扰动会导致CHD的共同形式,包括大动脉异常。 oft的发育也取决于多种细胞类型之间的旁分泌相互作用,包括心肌,心内膜和神经rest谱系。 在本出版物中,专门针对安德里亚娜·吉滕伯格(Andriana Gittenberger-de Groot)教授及其对心脏发展和CHD领域的贡献,我们回顾了她对FAST开发的一些开创性研究,对许多促成OFT的多种细胞类型的多样性具有特别感兴趣。 我们还讨论了选定的关键发现的临床意义,以理解我们对CHD的病因,尤其是经常畸形。SHF开发的扰动会导致CHD的共同形式,包括大动脉异常。oft的发育也取决于多种细胞类型之间的旁分泌相互作用,包括心肌,心内膜和神经rest谱系。在本出版物中,专门针对安德里亚娜·吉滕伯格(Andriana Gittenberger-de Groot)教授及其对心脏发展和CHD领域的贡献,我们回顾了她对FAST开发的一些开创性研究,对许多促成OFT的多种细胞类型的多样性具有特别感兴趣。我们还讨论了选定的关键发现的临床意义,以理解我们对CHD的病因,尤其是经常畸形。
摘要 - 这项研究对近紫外光谱中的低语画廊模式(WGM)微球光学特性进行了全面分析,并通过频率锁定来减少激光线宽的实际实现。由于利用了坚固的角度抛光纤维,可以实现光耦合,从而探索了各种耦合行为。固有的Q 0-因子,在2下测量。2×10 8,以及7个技巧。3×10 4,在420 nm处报告。讨论了导致Q 0-因素的物理机制,并绘制了改善性能的路线。通过将频率锁定到WGM微孔的高Q共振上,已经获得了外部空腔二极管激光从887 kHz降低到91 kHz的线宽。对这些结果的研究将绩效评估带来,从而对局限性有透彻的了解并确定增强降噪的潜在途径。如此高的Q因子和高技巧是简化基于WGM微孔子的光子设备的关键要素。
摘要:激子 - 波利顿代表一个有前途的平台,它结合了未来光电设备的光子和电子系统的强度。但是,由于制造方法的成本高成本和复杂性,他们的应用目前仅限于实验室研究,这与用于微电子的成熟CMOS技术不兼容。在这项工作中,我们开发了一种创新,低成本和CMOS兼容的方法,用于制造大型表面极化器件。这是通过通过热纳米膜直接对卤化物 - 玻璃盐薄膜进行直接构图来实现的。结果,我们观察到高度均匀的偏振质量模式Q≈300在室温下,千万尺度上。令人印象深刻的是,该过程提供了很高的可重复性和忠诚度,因为可以将相同的模具重复使用超过10次,以将钙钛矿层贴在不同类型的底物上。我们的结果可能为在室温下运行的低成本集成极化设备的生产铺平了道路。
水监测,环境分析,细胞培养稳定性和生物医学应用需要精确控制。传统方法(例如pH条和米)具有局限性:pH条缺乏精度,而电化学仪表虽然更准确,但脆弱,容易漂移,不适合小体积。在本文中,我们提出了一种基于多重传感器的光学检测方法,该传感器具有通过两光子聚合制造的4D微腔。这种方法采用微孔子几何形状的pH触发变化,并整合了数百种双光学耦合的4D微腔,以达到0.003 pH单元的检测极限。所提出的解决方案是面向用例的高质量聚合结构的用用例使用的明确示例。由于多路复用成像平台的好处,双4D微孔子可以与其他微孔子类型集成以进行pH校正的生化研究。
光脉冲成型是超快光学,射频光子和量子通信的强大技术。现有系统依赖于带有平面波导段的批量光学元件或集成平台进行空间分散,但它们在实现填充器(少量或sub-GHz)频谱控制方面面临限制。这些方法需要相当大的空间,或者在组装以实现实现分辨率的情况下,从预测的相误差和光损失中进行了措施。解决这些挑战时,我们使用具有内联相位控制和高光谱分辨率的微波炉过滤器库提出了铸造式六通道硅光子塑造器。利用现有的基于梳子的光谱技术,我们设计了一个新型系统来减轻热串扰并实现我们的芯片上塑形器的使用。我们的结果表明,在3、4和5 GHz的可调通道间距上,塑形器能够在六个梳子线上相同的能力。特别是在3 GHz通道间距下,我们展示了时间域中的任意波形的产生。这种可扩展的设计和控制方案有望满足未来对高精度光谱塑形功能的需求。
2 524+ 6 7)24+)7)8 $%0。 < - 9)1 9; - 9。 > <<; +?;; 24+ 9: - 9 @: - 9-9))1
来自连续波驱动的Kerr-Nonlinear微音主管的频率梳已演变为一项关键的光子技术,并从光学通信到精度光谱法进行了应用。对于许多这些应用来说,是对梳子定义参数的控制,即载波 - eNvelope偏移频率和重复率。 一种控制两个自由度的优雅而全面的方法是将次级连续波激光器适当地注入到谐振器中,其中一个梳子线锁定在其上。 在这里,我们通过实验研究了微孔孔梳子中的侧带注射锁定,并在宽的光学带宽上研究了锁定范围和重复速率控制的分析缩放定律。 作为一个应用程序示例,我们证明了光频分割和重复率相位噪声降低至自由运行系统噪声的三个数量级。 提出的结果可以指导侧带注入锁定的,参数生成的频率梳子的设计,并具有低噪声微波生成的机会,具有简化的锁定锁定方案的紧凑型光学时钟,以及更一般而言的,从Kerr-Nonlinelear resonators获得的全面稳定的频率梳子。 ©2023作者。 所有文章内容(除非另有说明,否则都将根据创意共享归因(cc by)许可(http://creativecommons.org/licenses/4.0/)获得许可。 https://doi.org/10.1063/5.0170224是对梳子定义参数的控制,即载波 - eNvelope偏移频率和重复率。一种控制两个自由度的优雅而全面的方法是将次级连续波激光器适当地注入到谐振器中,其中一个梳子线锁定在其上。在这里,我们通过实验研究了微孔孔梳子中的侧带注射锁定,并在宽的光学带宽上研究了锁定范围和重复速率控制的分析缩放定律。作为一个应用程序示例,我们证明了光频分割和重复率相位噪声降低至自由运行系统噪声的三个数量级。提出的结果可以指导侧带注入锁定的,参数生成的频率梳子的设计,并具有低噪声微波生成的机会,具有简化的锁定锁定方案的紧凑型光学时钟,以及更一般而言的,从Kerr-Nonlinelear resonators获得的全面稳定的频率梳子。©2023作者。所有文章内容(除非另有说明,否则都将根据创意共享归因(cc by)许可(http://creativecommons.org/licenses/4.0/)获得许可。https://doi.org/10.1063/5.0170224https://doi.org/10.1063/5.0170224
背景:近年来,聊天机器人在心理健康支持中的使用呈指数增长,研究表明它们可能有效地治疗心理健康问题。最近,引入了称为数字人类的视觉化身。数字人类有能力将面部表情用作人类计算机相互作用的另一个维度。重要的是要研究基于文本的聊天机器人和数字人物之间的情绪响应和可用性偏好的差异,以与心理健康服务互动。目的:本研究的目的是探索由健康参与者测试的数字人类界面和仅使用文本的聊天机器人界面在何种程度上有所不同,使用Betsy(行为,情感,治疗系统和您)使用2个不同的接口:具有拟人化的数字人类,具有拟人化功能和文本单位用户界面。我们还着手探索聊天机器人为心理健康(特定于每个界面)的对话如何影响自我报告的感觉和生物识别技术。方法:我们探索了具有拟人化特征的数字人与仅传统文本聊天机器人通过系统可用性量表感知可用性,通过脑电图的情感反应以及紧密感的情感反应的程度不同。健康的参与者(n = 45)被随机分为2组,这些组使用具有拟人化特征的数字人(n = 25)或仅具有此类特征的仅文本聊天机器人(n = 20)。通过线性回归分析和t检验进行比较。两组的聊天机器人界面的平均值或高于平均水平的可用性评分。结果:纯文本和数字人类群体之间关于人口特征没有观察到的差异。对于仅文本聊天机器人,数字人类界面的平均系统可用性量表得分为75.34(SD 10.01;范围57-90),与64.80(SD 14.14;范围40-90)。女性更有可能报告对Betsy感到恼火。
电扭曲的布里渊散射提供了一种无处不在的机制,可以在光学上激发高频(> 10 GHz),散装声音子,这些声子对表面诱导的损失具有可靠性。在高Q微孔子中共同增强了这种光子 - 光子相互作用,已催生跨越微波炉的多种应用到光学结构域。然而,将泵和散射的波和散射的波调节通常带有光子限制或模态重叠的成本,从而导致光学机械耦合有限。在这里,我们引入了Bragg散射,以实现在微米大小的超级模式微波器的相同空间模式下实现强大的光学机械耦合。显示出高达12.5 kHz的单光机电耦合速率,比其他设备显示出10倍以上。低阈值声子激光和光力强耦合。我们的工作建立了一个紧凑而有效的范式,以光学地控制大量的声音声子,为单光器水平的光学机械耦合铺平了道路,并为量子网络的大规模集成提供了强大的发动机,其中量子网络大量传递和存储了量子状态。