散斑是一种干涉现象,由相干照明从物体平面的光学粗糙表面散射而产生。传播到光瞳平面后,背向散射的光线自干涉形成亮斑和暗斑,这些斑块被称为“散斑”。假设照明为准单色,且表面高度变化超过光波长的一半,则散斑图案将“完全显现”,对比度趋于一致。在非合作定向能应用中,散斑充当乘性噪声,对图像质量[2]和轨迹质量[3]产生有害影响。给定一个扩展信标,自适应光学系统必须分别感测和校正大气引起的相位像差(导致闪烁)和物体引起的相位像差(导致散斑)。然而,波前传感器(在自适应光学系统内)实际测量和重建的是来自两个相位像差源的路径积分贡献的总和。例如,夏克-哈特曼波前传感器 (SHWFS) 使用单独的小透镜将接收器孔径划分为子孔径,这些子孔径对入射波前进行采样,并将样本聚焦到探测器阵列上。
a 宾夕法尼亚州立大学材料科学与工程系 b 宾夕法尼亚州立大学机械工程系 c 阿贡国家实验室 X 射线科学部
- 地震学 - 天气和气候 - 探地雷达 - 分布式孔径(在轨) - 进行勘探和测绘 - 提供系统级弹性 当前的运营模式无法扩展:自主性正在使
利用分布式孔径的空间干涉测量法是天文学和天体物理学任务中一项重要的技术。在该技术中,来自不同孔径的电磁波(波长从 100 米(无线电)到 100 纳米(光学))观测同一目标时会叠加在一起,以产生干涉并提取信息。干涉仪的分辨率会随着卫星间距离(基线)的增加而提高。地面光学干涉测量法在凯克天文台(美国夏威夷)、欧洲南方天文台(智利)、大型双筒望远镜天文台(美国亚利桑那州)、威尔逊山天文台(美国加利福尼亚州)、洛厄尔天文台(美国亚利桑那州)等地进行。44 已经提出了许多基于空间的光学干涉测量任务,但迄今为止尚未实现:
在单变量和多变量参数模型发布后,数据库经历了一次独立审查。审查结果发现几个数据点不正确。因此,数据库经历了一次全面审查:一些望远镜被从分析中删除;其他望远镜的数据进行了修改;新的望远镜被添加到数据库中。由于这些变化,成本模型也发生了变化。但总体结论保持不变:孔径直径是大型太空望远镜的主要成本驱动因素;建造大型望远镜每平方米收集孔径的成本低于小型望远镜;建造低面密度望远镜每公斤的成本高于大型望远镜。一个显著的区别是,望远镜成本约占总任务成本的 10%,而不是 30%。