摘要:维度在有机半导体的电荷传输特性中起重要作用。尽管三维半导体(例如Si)在无机材料中很常见,但在三维有机聚合物中赋予了电导率,这是有挑战性的。现在,使用无催化剂的Diels-Alder Cycloadition聚合合成了三维P-偶联的多孔有机聚合物(3D P-POP),然后提出了酸促进的芳香化。具有801 m 2 g 1的表面积,在整个碳主链中完全结合,在用I 2蒸气处理后的6(2)10 4 SCM 1的电导率为6(2)10 4 SCM 1,3D P-POP是新型永久性多孔3D 3D有机半导体的首位成员。P孔有机聚合物(POP)由于其永久性孔隙度,可调孔径,结构模块化,大表面积和高理化稳定性,因此引起了人们的注意。In partic- ular, POPs [1] with extended p -electron conjugation are attractive for their desirable properties in high electron mobility and electrical conductivities, allowing for low-cost and lightweight organic semiconductor applications such as light-emitting diodes, solar cells, field-effect transistors, organic lasers, battery electrodes, and photocatalysis.[2]迄今为止,已经有许多二维(2D)P-共轭流行音乐,例如用于太阳能电池应用的基于噻吩的CMP [3]和I 2掺杂的JUC-Z2 [4],用于电化学离子传感,以及对2D POROFE for PhotemoConductors sppped sppped sppped spppations secting secting secting secting secting s extrochemical离子传感。[5]通过创建具有相似电导率但较高表面积和较低密度的3D聚合物来增加电荷传输的维度,这可能对许多应用(例如催化和气体传感)有益。[6]的确,3D POP的骨干通常合并SP 3碳中心,[7]破坏了P -Conju-
地质调查技术在优化可再生能源项目的选址和确定适合碳储存的地点以缓解气候变化方面发挥着至关重要的作用。本摘要概述了如何使用地质调查技术来实现这些目标。可再生能源开发,特别是太阳能和风能,需要仔细选择地点,以最大限度地提高能源生产效率并最大限度地减少对环境的影响。地质调查有助于评估地下地质、地形、土壤成分和水文条件等因素。这些调查有助于确定具有最佳风能或太阳能资源和适合基础设施建设的地质条件的合适地点。此外,地质调查对于确定适合碳储存的地点至关重要,碳储存是旨在减少温室气体排放的碳捕获和储存 (CCS) 技术的关键组成部分。地质构造,例如深层盐水层、枯竭的油气储层和不可开采的煤层,可作为捕获的二氧化碳 (CO 2 ) 的储存库。地质调查有助于描述这些地层的特征,以评估它们是否适合长期储存二氧化碳,同时考虑孔隙度、渗透性和密封完整性等因素。优化可再生能源项目和碳储存的选址需要全面了解地下地质和环境条件。先进的地质调查技术,如地震成像、遥感和地球物理调查,对于获取详细的地下数据至关重要。这些技术使科学家和工程师能够评估场地适宜性、评估风险并设计有效的缓解措施。总之,地质调查技术是优化可再生能源项目选址和确定合适的碳储存位置的宝贵工具。通过利用这些技术,利益相关者可以做出明智的决策,促进可持续能源发展并减轻气候变化的影响。
随着世界上常规的石油和天然气资源的消耗,非常规石油和天然气资源已成为勘探与开发的重点和热点(Li等,2019; Yin等,2020a; Fan.fan等; 2020; Li,20222a)。近年来,在中国已经探索和开发了一系列非常规的石油和天然气资源(例如,砂岩气,页岩气,煤层甲烷和水合物)在中国进行了探索和开发,其中已经对砂岩气和页岩气进行了商业开发(Wu等人,2022222; Xie等,2022)。紧密的砂岩气体是中国最早开发的非常规的气体,在中国的总天然气储量和生产中起着重要作用,总资源约为17.4×10 12 - 25.1×10 12 m 3,其可回收资源约为8.8×10 12-12.1×10 12 M 3(Zou等,2018年)。在过去的十年中,中国在页岩气中取得了显着的探索和发展成就。在四川盆地内外建造了八个页岩气场(例如Fuling,Luzhou,Changning,Weiyuan和Zhaotong)。在2021年,中国的页岩气产量达到230 m 3×10 8 m 3,主要来自较浅的页岩地层。深层页岩气资源(超过3500 m)将是超过80%总资源的长期勘探和开发目标(Li J.等,2022a)。紧密的砂岩和页岩储层具有超低孔隙度和渗透率的特征,并且页岩储层具有最差的物理特性(Li J.等,2022b; Fan.fan et al。,2022)。因此,这种储层的多尺度孔和断裂特征的定量表征对紧密的油气和天然气具有很大的意义。
近海地质二氧化碳(CO 2)存储的机会是有希望的,对地下压力的评估对于最大程度地降低CO 2泄漏的风险至关重要。本研究旨在评估压力和温度条件,以确定该区域是否具有安全长期存储的能力。This objective was achieved by using a suite of geophysical well logs, four-arm caliper logs, geochemical data and data from the BOEM Sands Database for geomechanical stress fi elds assessment, borehole breakout analysis, and to build 3D simulations of reservoir pressure and fracture pressure in seven protraction areas of the Central Gulf of Mexico.地质力学评估的结果表明,包含大量突破的井段将具有低CO 2的储存电位,因为孔压接近最小水平应力。大陆斜率中的储层温度梯度大大降低了约3,048 m(〜10,000 ft)的深度。不断变化的地热梯度似乎源于浅层柱的热量对泥线上的热量的冷却,以及与基础热流以及深度处的活性碳氢化合物产生和迁移相关的导电和对流热流。3D压力模型揭示了架子砂,海底下方约1,600 m(5,249 ft)位于安全的CO 2存储窗口中。结果表明,可以在低于最小水平应力的压力下安全地注入CO 2,以最大程度地减少交叉形态流动的风险,并且该区域中沙单元的高孔隙度和渗透率可以促进在成熟的碳氢化合物储层和盐水形成中有效地将CO 2的长期存储在成熟的储存中。
o秘书于2023年6月2日星期五宣布了批准。有效于联邦公报出版。o禁止采矿和矿产租赁法(例如铀,煤炭,石油,天然气)授权的活动。不影响有效的现有权利。o适用于大约。336,000英亩的联邦矿产庄园。o不会影响与2003年资源管理计划O的通行权或任何其他活动O不包括根据1947年《材料法》(例如,沙子,砾石,嗡嗡声等)的处置。rac问题:mule鹿研究完成了吗?是。现在正在进行对该地区羚羊的研究。rac问题:随着行政管理的转变,Chaco提款的耐用性?他们可以被撤销吗?是的,可以撤消Chaco撤离。BLM员工正在研究资源管理计划的修订,以增加更强大的保护。RAC问题:法明顿野外办公室是否仍将通知发送给指示井钻探地点钻探/活动的部落?是。BLM向所有拟议项目发送政府到政府咨询信。RAC问题:Chaco戒断是否仅影响未来的租赁?是否有任何地方的活动租赁概述?是的,可以查看主动租赁。RAC成员被显示了所有现有租赁的地图。chaco不在感兴趣的断层线之外。rac问题:查科是否也有国家的土地保护?否。Chaco撤离仅用于联邦土地;但是,新墨西哥州土地办公室确实暂停了有关查科地区周围国家土地的暂停。RAC问题:是否有任何研究地点和土壤测试地图查看由于气候变化/荒漠化引起的土壤结构吗?放牧还会影响土壤的压实,影响的水分孔隙度以及Arroyos中的沉积物负荷 - 您在看这个吗?不,BLM目前没有进行的测试工作。 范围管理专家目前使用自然资源保护服务网络土壤调查和生态场地描述来监视随着时间的变化。不,BLM目前没有进行的测试工作。范围管理专家目前使用自然资源保护服务网络土壤调查和生态场地描述来监视随着时间的变化。
术语表 申请表 按照《安大略省规划法》编写的开发规划申请表,包括官方规划修正、分区条例修正、分区规划草案、公寓规划草案和场地规划审批申请。 树艺师报告 由认证树艺师编写的报告,确定树木的种类和大小,评估树木的健康和状况,列出对树木将要进行的工作性质、树木更换、重新种植的信息和树艺师对树木处理的建议,即建议移除和更换、建议保存等。 考古评估 根据省和市的要求,在具有考古潜力的区域内或附近进行的评估。 综合发展计划 一份说明目标土地与毗邻财产以及周边地区土地用途的计划。概念规划 按比例绘制的规划,展示拟议的开发项目,包括所有现有的自然和人为因素,包括现有建筑物和拟建建筑物、车道、停车区、人行道、园景区域、便利设施、物业限制、自然特征(包括溪流、森林区域、湿地)及其描述。 建筑侵蚀和沉积物控制规划 详细说明控制沉积物和侵蚀措施的规划。有关更多信息,请参阅市场地规划控制指南:http://www.greatersudbury.ca/inside-city-hall/landuseplanning/application-forms/pdf-documents/site-plan-control-guide/。 官方规划修正案草案 官方规划修正案草案包括市政府要求的所有文本、地图和附录。 公寓规划草案 规划中需要包含的信息必须符合《规划法》及其规定。规划草案中需要包含的信息包括: a) 公共设施的拟议专属使用区域,如室外庭院和停车场; b) 通往拟议私人单位的车道和行人通道 分区规划草案 规划中所需的信息应符合《规划法》及其规定。规划草案中需要显示的信息包括: a) 经安大略土地测量师认证的拟分区土地边界 b) 拟议分区内拟议公路的位置、宽度和名称以及拟议分区毗邻的现有公路的位置、宽度和名称 c) 在小关键规划图上,比例不小于 1 厘米比 100 米,列出申请人拥有或申请人有权益的拟议分区相邻的所有土地,以及拟议分区相邻的每个分区,以及拟分割土地的边界与该土地全部或部分所属乡镇地块或其他原始授予地块边界的关系 d) 地块或街区的用途 e) 所有毗连土地的现有用途 f) 拟议地块的大致尺寸和布局 g) 拟分割土地内或附近的自然和人工特征,如建筑物或其他结构或设施、铁路、公路、水道、排水沟、沼泽和林区 h) 生活供水的可用性和性质 i) 土壤的性质和孔隙度 j) 确定公路等级和土地排水可能需要的现有轮廓或海拔 k) 拟分割土地现有或将要提供的市政服务 l) 影响拟分割土地的任何限制性契约或地役权的性质和范围 分区条例修正案草案 分区条例修正案草案包括以下文件要求的所有文本、地图和附录:城市。
大气中过剩的二氧化碳必须被吸收到植物和土壤中。在这种情况下,甘蔗种植在利用二氧化碳方面发挥着关键作用,因为它是一种C4植物,在光合作用过程中具有很高的二氧化碳利用效率。另一种干预措施可能是通过改变营养管理措施来增强二氧化碳的捕获,这可以通过提高甘蔗的氮效率来增强叶绿素的合成。不同的处理方法可以增强光合作用,因为更多的二氧化碳被捕获。因此,甘蔗作物和根际土壤在大气脱碳过程中起着重要的碳汇作用,最终降低碳含量并导致全球变冷。土壤性质和碳储量:结果表明,由于施用了不同的有机改良剂,不同处理组的土壤物理性质和化学性质存在显著差异。经分析,土壤有机碳(SOC)含量在0.47%到0.67%之间。不同的有机改良剂处理对土壤容重和孔隙度有显著的影响,并明显提高土壤碳储量。植物碳储量:甘蔗植株不同部位,包括根、茎和叶的碳储量存在显著差异。T 6 下叶片的碳储量最高(877.08 kg ha -1 ),其次是 T 2 下的根(668.74 kg ha -1 ),T 5 下的茎(422.77 kg ha -1 ),这表明叶片储存的碳比根和茎高 30.41% 和 107.58%,而根比茎高 58.18%。不同处理中甘蔗生物量(包括地上部分和地下部分,即根)的总碳储量存在显著差异。甘蔗地上部分(叶和茎)的平均碳储量(1239.65 kg ha -1 )明显高于地下部分(621.73 kg ha -1 )(根)。结果表明,甘蔗种植方式对碳封存有良好的效果,从而有助于减缓气候变化的影响。关键词:甘蔗;碳储存;气候变化;光合作用;碳封存。1. 引言甘蔗是一种多年生草本植物,在全球 90 多个国家进行商业种植,全球种植面积约为 26×10 6 公顷,全球产量为 18.3 亿吨 [1]。甘蔗主要用于生产糖。它也用于饲养牲畜和生产作为生物燃料的乙醇 [2]。然而,作为 C4 植物,甘蔗作物将碳封存到植物和土壤中的能力至关重要。气候变化的主要原因是温室气体(GHG),其中包括主要由人类不可持续活动排放的二氧化碳(CO 2)[3]。正如政府间气候变化专门委员会[4]报告的那样,由于温室气体排放和全球变暖,预计到本世纪末地球表面温度将上升 1.4°C 至 5.8°C。因此,为了稳定全球温度,必须减少人为产生的二氧化碳 [5],并将大气中过剩的二氧化碳吸收到植物和土壤中。在这种情况下,甘蔗种植在利用大气中的二氧化碳方面发挥着关键作用,因为它是一种 C4 植物,能够高效利用太阳辐射,并在光合作用中消耗更多的二氧化碳。某些干预措施有助于增强营养盐吸收二氧化碳的能力。
摘要 我们开发了一种分析填充粒子的工具,以应对颗粒生物材料日益流行的趋势。颗粒水凝胶,包括微孔退火粒子 (MAP) 支架,是一类用于治疗应用的材料,因为它们具有独特的性质,包括粒子之间的微孔隙度。颗粒材料的微观结构很难研究,这导致该领域的许多人报告不可靠的空隙体积分数度量和/或 2D 切片近似“孔径”作为空隙空间的唯一特征。为此,我们创建了 LOVAMAP,这是一款定制软件,它结合了计算几何和图论技术,将空隙空间分割成 3-D 孔隙,这是开放空间的自然口袋。LOVAMAP 的 44 个支架特征为用户提供了描述支架内部和入口的定量概况。我们视觉丰富的输出解决了诸如空隙大小、形状、连通性、路径、各向同性/各向异性、配体可用性以及渗透/迁移限制等主题。使用 LOVAMAP,我们研究了 60 种不同类型的颗粒支架,包括具有相应细胞数据的真实 MAP 支架。我们使用高维分析来表明,我们软件的输出数据可用于对 3-D 孔隙类型进行分类,以及通过生成数字“指纹”来表征整个支架。结合细胞数据,LOVAMAP 揭示了神经球形成与支架空隙几何形状之间的关系。LOVAMAP 是一种支持技术,广泛应用于颗粒生物材料研究以及研究颗粒材料的所有领域。背景由于颗粒生物材料越来越受欢迎,填充颗粒及其周围的空隙(间隙空间、孔隙空间)是一个热门研究课题。颗粒材料在许多应用领域都很有吸引力,包括可注射组织模拟物和 3D 生物打印,因为它们具有独特的属性,例如剪切稀化行为、增加的材料表面积以及离散异质性的选项 1,2。由水凝胶微粒(微凝胶)制成的颗粒材料已用于促进多种疾病模型中的伤口愈合,包括中风 3、心肌梗死 4、皮肤伤口 5 和脊髓损伤 6。当微凝胶堆积在一起时,它们形成一种称为颗粒支架的 3D 结构,当颗粒支架的微凝胶连接在一起时,所得到的稳定结构称为微孔退火颗粒 (MAP) 支架 7。堆积的微凝胶在整个支架中形成空隙空间微孔,从而使细胞在颗粒之间畅通无阻地浸润和迁移。许多研究支持局部几何形状影响细胞行为的观点 8-13 ,并且在颗粒支架中,细胞感知到的局部几何形状是空隙空间的微观结构。因此,我们的目标是了解颗粒支架的内部几何形状,以改进材料设计。在生物材料领域,使用二维显微镜图像近似的孔隙率是最常见的支架空隙空间量化方法。孔隙率通常报告为孔隙体积分数或二维“孔”长度测量值的分布。我们之前已经揭示了报告孔隙率的这种近似值的细微差别 14 ,我们认为空隙体积分数和二维孔隙近似值不足以作为独立指标,因为它们忽略了三维空隙空间局部口袋中的复杂性和几何多样性。其他领域(数学、物理、地球科学、化学、农业等)对堆积颗粒进行了广泛的研究,而没有考虑空隙空间几何形状如何影响细胞的行为。研究通常侧重于粒子本身,其中已经开发出方法来识别粒子边界 15-17 或构建接触粒子的图形以研究粒子连通性、填充配置和应力链 18-23 。然而,这些结果未能表征空隙空间。一些以粒子为中心的研究包括有关空隙空间的信息,
Ulavathi S. Mahabaleshwar ca 乌克兰国家科学院单晶体研究所,Nauky Ave. 60,哈尔科夫 31001,乌克兰 b VN Karazin 哈尔科夫国立大学 4,Svoboda Sq.,哈尔科夫,61022,乌克兰 c 达万格雷大学 Shivagangotri 数学系,达万格雷,印度 577 007 *通讯作者:michaelkopp0165@gmail.com 收到日期:2022 年 9 月 23 日;修订日期:2022 年 10 月 30 日;接受日期:2022 年 11 月 3 日 纳米流体和微生物饱和的多孔介质中的热对流研究是许多地球物理和工程应用的重要问题。纳米流体和微生物混合物的概念引起了许多研究人员的兴趣,因为它能够改善热性能,从而提高传热速率。此特性在电子冷却系统和生物应用中都得到了广泛的应用。因此,本研究的目的是研究在垂直磁场存在下,多孔介质中的生物热不稳定性,该介质被含有旋转微生物的水基纳米流体饱和。考虑到自然和技术情况下都存在外部磁场,我们决定进行这项理论研究。使用 Darcy-Brinkman 模型,对自由边界的对流不稳定性进行了线性分析,同时考虑了布朗扩散和热泳动的影响。使用 Galerkin 方法进行这项分析研究。我们已经确定传热是通过没有振荡运动的稳态对流完成的。在稳态对流状态下,分析了金属氧化物纳米流体(Al 2 O 3 )、金属纳米流体( Cu 、Ag)和半导体纳米流体( TiO 2 、SiO 2 )。增加钱德拉塞卡数和达西数可显著提高系统稳定性,但增加孔隙度和改变生物对流瑞利-达西数会加速不稳定性的开始。为了确定热量和质量传输的瞬态行为,应用了基于傅里叶级数表示的非线性理论。在较短的时间间隔内,过渡的努塞尔特数和舍伍德数表现出振荡特性。时间间隔内的舍伍德数(质量传输)比努塞尔特数(热传输)更快达到稳定值。这项研究可能有助于海洋地壳中的海水对流以及生物传感器的构造。关键词:纳米流体、生物热对流、洛伦兹力、热泳动、布朗运动、旋转微生物、磁场 PACS:44.10.+i、44.30.+v、47.20.-k 1. 简介 土力学、地下水水文学、石油工程、工业过滤、粉末冶金、核能等领域的许多理论和实践研究都是基于对多孔介质流动物理学的研究。石油工程师和地球物理流体动力学家对多孔介质中的此类流动非常感兴趣。多孔介质中液层的热不稳定性问题尤为重要。Ingham 和 Pop [1] 以及 Nield 和 Bejan [2] 对大多数多孔介质对流研究进行了出色的综述。Vadasz [3] 在最近的一篇综述中详细研究了旋转多孔介质中的流体流动和传热问题。随着纳米技术的进步,尺寸小于一百纳米的物体已经发展起来。这种纳米尺寸的物体称为纳米颗粒。Choi [4] 建议将这些纳米颗粒悬浮在基液(称为纳米流体)中,以提高基液的导热性和对流传热。因此,纳米流体开始在工业中得到广泛应用,例如冷却剂、润滑剂、热交换器、微通道散热器等等。 Buongiorno [5] 广泛研究了纳米流体中的对流输送,并致力于解释在对流下观察到的额外传热增加。Tzou [6] 使用 Buongiorno 传输方程研究了纳米流体在从下方均匀加热的水平层中对流的开始,发现由于纳米颗粒的布朗运动和热泳动,临界瑞利数比普通流体低一到两个数量级。由于纳米流体在传热现象中具有显著的特性,因此需要研究多孔介质中的纳米流体。Kuznetsov 和 Nield [7]-[8] 使用 Brinkman 模型研究了充满纳米流体的多孔介质中热不稳定性开始的情况,其中考虑了布朗运动和纳米颗粒热泳动。他们发现,纳米颗粒的存在可能会显著降低或增加临界热瑞利数,这取决于基本纳米颗粒分布是上重还是下重。此外,Bhadauria 和 Agarwal [9] 以及 Yadav 等人 [10] 扩展了热不稳定性问题,包括纳米流体的应用十分广泛,例如润滑剂、热交换器、微通道散热器等等。Buongiorno [5] 广泛研究了纳米流体中的对流输送,并着重解释对流下观察到的额外传热增加。Tzou [6] 使用 Buongiorno 传输方程研究了纳米流体在从下方均匀加热的水平层中对流的开始,发现由于纳米颗粒的布朗运动和热泳动,临界瑞利数比普通流体低一到两个数量级。由于纳米流体在传热现象中具有显著的特性,因此需要研究多孔介质中的纳米流体。Kuznetsov 和 Nield [7]-[8] 使用 Brinkman 模型研究了饱和纳米流体的多孔介质中热不稳定性他们发现,纳米颗粒的存在可能会显著降低或增加临界热瑞利数,这取决于基本纳米颗粒分布是上重还是下重。此外,Bhadauria 和 Agarwal [9] 以及 Yadav 等人 [10] 扩展了热不稳定性问题,包括纳米流体的应用十分广泛,例如润滑剂、热交换器、微通道散热器等等。Buongiorno [5] 广泛研究了纳米流体中的对流输送,并着重解释对流下观察到的额外传热增加。Tzou [6] 使用 Buongiorno 传输方程研究了纳米流体在从下方均匀加热的水平层中对流的开始,发现由于纳米颗粒的布朗运动和热泳动,临界瑞利数比普通流体低一到两个数量级。由于纳米流体在传热现象中具有显著的特性,因此需要研究多孔介质中的纳米流体。Kuznetsov 和 Nield [7]-[8] 使用 Brinkman 模型研究了饱和纳米流体的多孔介质中热不稳定性他们发现,纳米颗粒的存在可能会显著降低或增加临界热瑞利数,这取决于基本纳米颗粒分布是上重还是下重。此外,Bhadauria 和 Agarwal [9] 以及 Yadav 等人 [10] 扩展了热不稳定性问题,包括