摘要:线弧添加剂制造(WAAM)以其高沉积速率而闻名,从而使大部分生产。然而,该过程在制造铝制零件时面临诸如孔隙率形成,残留应力和破裂的挑战。本研究的重点是通过使用Fronius冷金属转移系统(Wels,Austria)使用WAAM工艺制造的AA5356墙的孔隙率。将墙壁加工成以获取用于拉伸测试的标本。该研究使用计算机断层扫描和拉伸试验来分析标本的孔隙率及其与拉伸强度的潜在关系。分析的过程参数是行进速度,冷却时间和路径策略。总而言之,由于对焊接区域的热量输入较低,增加行进速度和冷却时间显着影响孔径。孔隙率可以减少热量积聚。结果表明,旅行速度的增加会导致孔隙率略有下降。特别是,当将旅行速度从700毫米/分钟提高时,总孔体积从0.42降低到0.36 mm 3。最终的拉伸强度和“来回”策略的最大伸长率略高于“ GO”策略的策略。在拉伸测试后,最终的拉伸强度和屈服强度与计算机断层扫描测量的孔隙率没有任何关系。对于所有扫描标本,测得的体积上孔总体积的百分比低于0.12%。
高速烧结是一种新型粉末床熔合增材制造技术,该技术使用红外灯提供密集的热能来烧结聚合物粉末。热能的量对于解决与颗粒聚结相关的缺陷(如孔隙率)至关重要。本研究调查了能量输入对孔隙率及其对聚酰胺 12 部件机械性能的影响。样品以不同的灯速生产,产生从低到高的不同能量输入。然后使用 X 射线计算机断层扫描技术对它们进行扫描,随后对其进行拉伸测试。发现能量输入、孔隙率和机械性能之间存在很强的相关性,其中孔隙形成的根本原因是能量输入不足。更多的能量输入导致孔隙率降低,从而导致机械性能改善。通过使用标准参数,实现的孔隙率、极限拉伸强度和伸长率分别为 0.58%、42.4 MPa 和 10.0%。进一步增加能量输入可使孔隙率降至最低 0.14%,极限抗拉强度和伸长率最高,分别为 44.4 MPa 和 13.5%。研究了孔隙形态、体积、数量密度和空间分布,发现这些与能量输入和机械性能密切相关。© 2020 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
本文评估了将氧化铝和二氧化硅纳米颗粒添加到釉料配方中的效果,以通过降低表面孔隙率来提高抛光的玻璃巴西瓷砖,以提高污渍耐药性。在研究的第一阶段中,制备了十种制剂 - 一种标准和九个测试配方,它们经过了抛弃后选择过程,主要标准是评估表面染色耐药性的改善。在具有光学显微镜的表面孔隙率分析中,观察到添加二氧化硅纳米颗粒会降低釉料的表面孔隙率,从而改善了最终产物的污渍耐药性。添加氧化铝纳米颗粒的结果显示孔隙率增加,使最终产物的抗污渍耐药性恶化。选择了最低表面孔隙率的三种配方以及标准的配方进行补充测试,涉及:X射线衍射测定法,差异扫描量热法,热力计测定法,扩张分析和扫描电子显微镜。通过热膨胀和半球温度测试,可以通过使用Vogel-Fulcher-Tammann公式来获得理论粘度的测量,并在添加硅纳米颗粒时在材料中较低温度下在较低温度下在较低的温度下证明膨胀软化,Littlettric软化和流动点。随后选择了与釉料孔隙率和其他物理化学特征(具有5%硅胶纳米颗粒的配方)的降低有关的表述,主要是与实验室所获得的结果进行了选择,即确认在实验室中获得的结果。
图2:从有或不包含强度定律方程的五个模型的预测孔隙率值的比较:(a)CNN,(b)knn,(c)lstm,(d)RF和(e)xgboost。将强度定律方程组合为输入的图可显着提高预测的准确性,从而与真实的孔隙率值更紧密地对齐。
可再生能源转型需要储能技术来实现电网平衡和运输。锂离子电池已被广泛用于这些应用,但由于地缘政治紧张局势导致的供应风险促使人们寻找不太依赖关键原材料的替代化学方法。由于钠的相对丰富及其制造工艺与锂离子电池相似,钠离子电池作为有前途的后锂化学技术而备受关注。这项工作估算了通过多物理场建模优化的用于能源或电力应用的电池生产钠离子电池组的成本。这项研究复制了 COMSOL Multiphysics® 文献中袋式钠离子电池的多物理场模型。该模型确定了在 0.1C 至 10C 放电率下电池中使用的最佳活性材料,以最大化能量密度。然后使用阿贡国家实验室的电池性能和成本 (BatPaC) 模型确定由优化电池生产的电池组的成本,该模型考虑了材料和制造成本。优化结果表明,能量电池具有更厚的电极和更低的孔隙率(0.1C 时阳极厚度为 217 μm,孔隙率 0.11,阴极厚度为 237 μm,孔隙率 0.10),从而使单位质量的活性物质含量最大化。动力电池具有更薄的电极和更大的孔隙率,以最大限度地降低电阻(10C 时阳极厚度为 58 μm,孔隙率 0.32,阴极厚度为 63 μm,孔隙率 0.31),从而减少大电流下的能量损失。此外,我们比较了钠离子电池能量应用和动力应用的计算生产成本,强调了影响价格的重要参数。该模型观察到,从能量电池过渡到动力电池时,每千瓦时总材料成本增加了 26.42%。该模型还可以通过考虑不同形式的具有不同阴极和阳极化学性质的钠离子电池及其在不同用例中的应用来完善。
当吸湿盐(MgSO4,xH2O)分布在具有足够的层次化孔隙率的氧化锆陶瓷基质中时,其用于热化学储能的性能可以大大提高。基质材料采用增材制造技术(robocasting)与造孔剂添加和部分烧结相结合的方式制造,以获得三级孔隙率(孔径分布在 3 个十年内,从 200 纳米到 200 微米)。然后通过用水性盐溶液渗透基质材料来获得复合材料。孔隙率使基质材料中储存的盐量及其与水蒸气的可及性最大化,从而产生潜在的高能量密度(高达 420 kWh·m -3 ),而不会在水合/脱水循环中损失效率。
在本文中,我们表明,由于蒸发效应,通过无颗粒墨水的等离子体转化制备的银 (Ag) 结构的表面形貌可由溶剂控制。我们使用了三种基于乙二醇的溶剂系列来系统地改变墨水的蒸气压。喷墨打印之后,通过暴露于低压、低温射频 (RF) 等离子体来转化薄膜。Ag 薄膜的扫描电子显微镜 (SEM) 和轮廓测定法表明,表面粗糙度和孔隙率取决于墨水溶剂的蒸气压,并且随着蒸气压的降低而增大。由于孔隙率的变化,电阻率随着溶剂蒸气压的降低而增大。为了证明金属印刷技术对粗糙多孔薄膜的效用,我们使用由三种基于乙二醇的溶剂组成的墨水制作了基于 Ag 的过氧化氢 (H 2 O 2 ) 传感器。发现这些传感器的灵敏度与表面粗糙度和孔隙率有关,而这又与溶剂的蒸汽压有关。
非常规地材料通常表现出多模式孔径分布。,我们为多孔介质开发了一个综合框架,该培养基表现出多孔的孔隙率尺度,使用混合理论饱和到一种或两种类型的流体。分别明确得出和识别了管理方程式和构成定律。从能量平衡方程中出现的有效应力𝝈'对于弹性和弹性变形都可以采用,在这种变形中,孔隙和饱和效果起着核心作用。提出的模型是一般的,从某种意义上说,它适用于未耦合的仿真和耦合模拟。使用拉普拉斯变换和数值拉普拉斯反转方法求解了未耦合流动模拟的场方程。通过可视化无量纲结果,我们可以在自然断裂的储层的耗尽过程中获得对不同阶段的定量见解。用于耦合流量和地球力学模拟,带状负载问题以及可变形3D储层问题中的两相流量说明了可塑性,多重孔隙率,孔隙率交换和毛细管压力对系统响应的影响。