有关多孔材料性能的研究仍在进行中(与传统沸石相比)。[1,2] 因此,详细了解孔隙结构尤为重要,但对这种复杂孔隙结构的可靠表征仍然是一项重大挑战。为了对此类分级材料进行全面的结构表征,需要结合多种互补的实验技术,例如气体吸附、X 射线衍射 (XRD)、小角度 X 射线和中子散射 (SAXS 和 SANS)、汞孔隙率测定法、电子显微镜(扫描和透射)、热孔隙率测定法、核磁共振 (NMR) 方法、正电子湮没寿命谱 (PALS) 和电子断层扫描。[3–7] 参考文献 [8] 概述了不同的孔径表征方法及其应用范围。图1说明了这些结构表征方法在孔径分析中的应用范围,也就是说,每种方法在孔径分析中的适用性都有限。气体吸附仍然是最流行的方法,因为它可以评估整个范围的微孔(孔宽<2纳米)、中孔(孔宽:2-50纳米),甚至大孔(孔宽>50纳米)。除了气体吸附之外,汞孔隙率测定法还用于表征更大的纳米孔和最大400微米的大孔。因此,气体吸附和汞孔隙率测定法的结合可以获得从孔宽<4纳米到至少≈400微米的广泛范围内的孔结构信息,凸显了这些技术对于多孔材料表征的重要性。经过一个多世纪的专门研究和开发,使用气体吸附对多孔材料进行物理吸附表征的方法已经很成熟。 20 世纪初的开创性实验和理论工作为我们理解气体吸附现象及其在结构表征中的应用奠定了基础。[10]
陶瓷金属复合材料具有重量轻、成本低、耐磨、耐腐蚀、强度高等特殊性能,是传统材料中颇具前途的先进材料。搅拌铸造是制造铝基复合材料成本最低、最简单的方法之一。搅拌铸造的主要局限性是增强陶瓷颗粒(团聚体)在金属基体中的分布不良、制造过程中复合材料的孔隙率以及陶瓷颗粒与熔融金属的润湿性。提高陶瓷金属基复合材料 (CMMC) 的搅拌铸造参数是许多研究的主要目标。本文将详细讨论搅拌铸造工艺,其中包括影响增强体均匀分布、制造过程中复合材料的孔隙率以及陶瓷金属基复合材料的力学性能的参数。
本研究系统地分析和优化了纯铜电子束熔炼工艺。结果表明,为了可靠制造,应优化预热温度以避免孔隙率和部件变形。电子束应完全聚焦,以防止收缩空隙(与负散焦相关)和材料飞溅(与正散焦相关)。较低的网格间距(例如 100µm)可使表面更光滑,从而提高密度可靠性,而较高的网格间距可达到更长的悬垂。还采用了合适的起始轮廓策略来减轻边界孔隙率、降低侧面粗糙度并提高几何精度。© 2022 作者。由 Elsevier Ltd 代表 CIRP 出版。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)
抽象目的骨螺旋层(OSL)是一种内部耳蜗骨结构,它从近二匹底座从底座到顶点,将耳蜗运河分离到Scala castibuli和Scala Tympani。OSL的孔隙率最近引起了科学家的注意,因为它的潜在影响了整体声音转导。OSL的Ves-tibular和鼓膜板之间的骨支柱在常规的组织病理学研究中并不总是可见的,因此通常缺乏或不完整的此类结构的成像。通过这项试点研究,我们首次瞄准了解剖学上的OSL详细证明和3D。方法,我们使用MicroCT使用较高的标称分辨率来测量人OSL的宽度,厚度和孔隙率,最高可达2.5 µm Voxel的大小。此外,从CT数据集创建了基础和中间的单个板的3D模型。结果,我们发现从基础转向顶端到顶点的鼓膜板和前庭板中孔隙率持续存在。鼓膜板似乎比基础和中间转弯的前庭板更多孔,而顶端中的多孔则较少。此外,3D重建使位于OSL板之间的骨支柱可以详细观察到。结论通过增强我们对OSL的理解,我们可以提高对听力机制的理解,并提高耳蜗模型的准确性和有效性。
这项调查是在塔拉科塔(Terracotta)戒指中采集的陶土样品,预计将在铁器时期建造,在印度泰米尔纳德邦(Tamil Nadu)的Pattaraiperumbubudur发掘。借助EDX,XRD和TG-DTA检验,使用FE-SEM检查样品,以找到样品的矿物组成,形态和生产技术。来自XRD结果很明显,样品中石英和长石的百分比较高。使用FE-SEM测试,在氧化气氛下发现点火温度在600-900°C之间。使用吸水和孔隙率测试研究了样品的物理特性,该测试对样品的多孔结构较少,从而想出了较低的燃烧温度。通过TG-DTA测试估计制造时的射击温度为600-900°C,它也与FE-SEM和孔隙率一致。
的砖块,而全球每年消耗的砖块约为 15000 亿块。为了满足这种过高的需求,使用过的原材料消耗得非常快,人们经常尝试探索结合替代可用废料的可能性,从而同时实现它们的利用和处理。使用不同类型的原材料包括有机可燃废料,例如烟头[1]、木炭[2]、甘蔗渣[3-7]、果壳[2,3,7]、纸[4,5]、花生壳[6]、橘皮[7]、塑料[8]、粪便[9]等,作为添加剂。可燃材料在烧制砖块的过程中会被消耗,这会导致砖块的孔隙率增加。这些添加剂会导致密度降低、吸水率增加和抗压强度降低。由于可燃材料浸渍的耐火粘土砖孔隙率高,另一个值得关注的问题是结构完整性的丧失。因此,砖块中添加的可燃材料的数量大多限制在 10-15% 左右。同样,不可燃废物如花岗岩 [10]、玻璃 [11,12],
电解在 1000 mA/cm 2 电流密度下进行,电解液为 35% KOH,温度为 200~,压力为 30 atm。电解 250 小时后,由于腐蚀产物在阳极内累积,阳极孔隙率从约 45% 降至约 20%。
WaveForm ® 椎体间体经过高效设计,优先考虑强度、表面和稳定性。SeaSpine ® 系列 WaveForm 椎体间体完全由重复和连续的波浪状结构制成,可以比其他 3D 打印结构 1 更有效地吸收和分配压缩载荷,具有高孔隙率和降低的刚度,同时不影响强度。与椎体间终板相比,WaveForm 椎体间的孔隙更大,以平衡增强成像特性的需求以及改善移植物流动性和保留性†。为了实现融合,与其他 3D 打印结构 1 相比,WaveForm 的片状结构为骨骼提供了更大的爬行表面积,并且端板孔隙率高达 65%,这已被证明 2 可以最大限度地提高早期稳定性的潜力。
摘要:在激光粉末定向能量沉积 (LP-DED) 过程中,会发生许多复杂现象。这些现象与构建过程中使用的条件密切相关,会影响零件在微观结构特征和机械行为方面的质量。本文研究了构建参数对通过 LP-DED 生产的 AISI 316L 不锈钢样品的微观结构和拉伸性能的影响。首先,通过研究其形态和几何特征,从单扫描轨迹开始选择构建参数。接下来,对使用两组参数构建的 316L LP-DED 块体样品的孔隙率、几何精度、微观结构和机械性能进行了表征。使用 Voce 模型分析了拉伸试验数据,并发现了拉伸性能与位错自由程之间的相关性。总体而言,数据表明,孔隙率不应被视为 LP-DED 部件质量的唯一指标,还应进行机械表征。