。 2 3计算与信息研究所2922,巴基斯坦; (khalid@gu.edu.pk)4欧罗比亚大学。萨贝尔·托雷斯(Sabel Torres)21,39011西班牙桑坦德(Santander); Prolacio。Cauanza是一所国际大学。Cuito,Bé,Angola8 La Romana大学。 多米尼加,通信和远程信息处理工程。 valladolid的Unviersity,PaseodeBelén,15。 47011 Valladold - 西班牙; 108 La Romana大学。多米尼加,通信和远程信息处理工程。valladolid的Unviersity,PaseodeBelén,15。47011 Valladold - 西班牙; 10
快速浏览的图像。尽管在计算机视觉中已经进行了巨大的发展,但诸如识别对象,动作分类,图像分类,属性分类和场景识别之类的任务是可能的,但是让计算机描述以类似人类句子的形式向其转发到它的图像是一个相对较新的任务。2。文献回顾了Andrej Karpathy等人的有影响力论文之一。在图像字幕中将任务划分为两个步骤:将句子段映射到图像中的视觉区域,然后使用这些通信来生成新的描述(Karpathy and Fei-Fei 2015)。作者使用区域卷积神经网络(RCNN)表示图像作为一组H维矢量,每个向量代表图像中的对象,基于200个Imagenet类检测到。作者在同一h维空间中的双向复发神经网络(BRNN)代表句子。每个句子是一组H维向量,代表片段或单词。BRNN的使用丰富了此表示,因为它学习了句子中每个单词上下文的知识。作者发现,有了这样的表示,单词的最终表示与与同一概念相关的视觉区域的表示密切一致。他们在单词和视觉区域的表示形式上定义了对齐得分,并在马尔可夫随机字段的帮助下,将各种单词与生成文本片段的同一区域对齐。借助图像区域和文本片段之间的这些对应关系,作者训练了另一个为新看不见的图像生成文本说明的模型(Karpathy and Fei-Fei 2015)。
超大尺寸的材料(例如地图、图纸、图表)通过分割原件进行复制,从左上角开始,从左到右分成相等的部分,并有小的重叠。每个原件也都拍摄了一次曝光,并以缩小的形式包含在书的后面。
摘要 在图像数量庞大、人们无法快速检索所需信息的当今世界,我们迫切需要一种更加简便、人性化的图像理解方式,图像字幕应运而生。图像字幕,顾名思义,就是通过分析理解图像信息,生成特定图像的自然语言描述,近年来被广泛应用于图文交叉研究、婴幼儿教育、弱势群体帮扶以及产业界的青睐,产生了许多优秀的研究成果。目前对图像字幕的评价基本基于BLUE、CIDEr等客观评价指标,容易导致生成的字幕无法接近人类语言表达,而GAN思想的引入使得我们能够采用对抗训练这种新的方法来对生成的字幕进行评价,评价模块更加自然、全面。考虑到对图像逼真度的要求,本课题提出了一种基于GAN的图像描述。引入Attention机制来提高图像保真度,使得生成的字幕更加准确,更接近人类的语言表达。
摘要 - 在过去的十年中,编码器二十字架框架的图像字幕显示出巨大的进步,在过去的十年中,CNN主要用作编码器,LSTM用作解码器。尽管在简单图像中的准确性方面取得了令人印象深刻的成就,但它在时间复杂性和空间复杂性效率方面缺乏。除此之外,如果具有许多信息和对象的复杂图像,则该CNN-LSTM对的性能由于缺乏对图像中显示的场景的语义理解而呈指数降级。因此,要考虑这些问题,我们提出了CNN-GRU编码器解码框架,用于字幕到图像重建器,以考虑到语义上下文以及时间复杂性。通过考虑解码器的隐藏状态,将输入图像及其相似的语义表示是重建的,并且在模型训练过程中使用了语义重建器的重建分数与可能的可能性使用,以评估生成的字幕的质量。结果,解码器会收到改进的语义信息,从而增强了字幕生产过程。在模型测试期间,选择最合适的标题也可行。建议的模型优于最先进的LSTM-A5模型,用于图片的图片字幕,以时间复杂性和准确性。
图像字幕使用视觉语言预先训练的模型(VLP)(例如Blip)从图像中生成描述性句子,该模型已得到很大改善。然而,当前的方法缺乏图像中描述的文化元素的详细描述标题,例如亚洲文化群体的人们穿着的传统服装。在本文中,我们提出了一个新的框架,具有文化意识的图像字幕(CIC),该框架生成字幕并描述从代表文化的图像中的文化视觉元素中提取的文化元素。受到通过适当提示来构建视觉模式和大语言模型(LLM)的方法的启发,我们的框架(1)基于图像中的文化类别产生问题,(2)提取文化的视觉问题(VQA)中的文化vi sual元素(VQA),并使用生成的问题以及(3)具有文化文化 - 瓦拉避难所使用llms的文化范围。我们对来自4个不同文化群体的45名参与者进行的人类评估对相应的文化有很高的了解,这表明,与基于VLP的图像字幕基线相比,我们提出的框架会产生更文化的描述性标题。可以在https://shane3606.github上找到。io/cic。
(v)软件主要是为了通过互联网连接并与之建立联系的软件,通过电缆,电话线,无线或卫星或其他方式可易于使用,在十二(12)个月内,美国人在ICT交易之前的任何时候都在使用超过1 milion的美国人使用,包括: (b)移动应用程序; (c)游戏应用程序; (d)基于Web的应用程序; (e)连接的软件应用程序;或(vi)ICT与:(a)人工智能和马克学习; (b)量子密钥分布; (c)量子计算; (d)无人机; (e)自治系统;或(f)高级机器人技术。(b)本部分不适用于ICT交易:(1)涉及美国人作为根据美国政府 - 工业授权计划授权的交易的一方收购ICT项目; (2)美国外国投资委员会(CFIUS)正在积极审查或已审查,作为涵盖交易或承保的房地产交易,或根据1950年《 De-Fense Product Act》第721条的一部分,作为修正案及其实施法规的第721条。(c)尽管本节(b)(2)款的豁免,但当事方在CFIUS审查的交易中进行的ICT交易并不属于CFIUS审查或CFIUS审查的涵盖房地产Trans-trans诉讼的一部分。
摘要:本研究采用复杂的深度学习技术来开发健壮的自动图像字幕模型,整合卷积神经网络(CNN),用于复杂的特征提取和长期短期记忆网络(LSTMS),以生成细微的序列。旨在解决在线视觉内容的激增,该技术促进了有效的图像解释,并通过涵盖可访问性增强的应用程序来提高可访问性,改进的搜索功能的内容索引索引,并通过上下文相关的图像标题来增强社交媒体参与度。该研究为计算机视觉提供了宝贵的见解,应对产生连贯的图像描述的挑战。精心调整的模型同时进行定量和定性评估,展示了在内容检索和人类计算机相互作用中创新应用的有希望的结果。最终,这项研究愿意提高自动图像理解,从而促进对视觉信息的增强性和推动人工智能的进步。
学习障碍是指在理解或使用口头或书面语言方面所涉及的一种或多种基本心理过程的障碍,表现为听、想、说、读、写、拼写或进行数学计算的能力不完善……