糖尿病是一种越来越多的慢性疾病,会影响世界上数百万的人。对患者的血糖水平进行定期监测以控制疾病。当前的血糖监测装置的方法通常是侵入性的,会给患者带来不适。非侵入性葡萄糖监测设备可能是糖尿病患者的游戏规则改变者,因为它会减少不适并提供连续监测。本手稿对非侵入性葡萄糖生物传感器进行了综述,特别关注市场上可用的领先技术,例如微波传感,近红外光谱,离子电池和光学方法。本文打算使用各种生物流体(汗水,唾液,间质液,尿液)来描述非侵入性血糖监测方法,从而突出显示最新设备开发中的优势和缺点。本综述还讨论了葡萄糖检测设备的未来趋势以及如何改善患者的生活质量。但是,与实现准确可靠的葡萄糖监测有关的挑战仍然存在一些挑战。需要进一步改进葡萄糖生物传感器,其性能的分析目标的标准化以及不断评估和培训外行用户。本文回顾了临床实践中葡萄糖生物传感器的简短历史,基本原理,分析性能和当前状态。
1 植物科学系,罗瑟姆斯特德研究中心,哈彭登 AL5 2JQ,英国 § 现地址:约翰·英纳斯中心,诺维奇研究园,诺维奇 NR4 7UH,英国 *通讯地址:vladimir.nekrasov@rothamsted.ac.uk 电话:+44 (0)1582 938 292 FH ORCID:0000-0002-0215-3209;VN ORCID:0000-0001-9386-1683 关键词:CRISPR、Cas9、植物、基因组编辑、Golden Gate、MoClo
我们回顾了具有等速储层的晚期绝热压缩空气存储厂的分析模型的文献,重点是可以从模型中提取的见解。审查表明,文献中缺少拥有绝热储层,绝热涡轮机械以及没有油门的植物的模型。假设植物在准稳态状态下运行,我们继续得出这种模型,可以将空气视为热量和热完美的气体,并且热能存储单元不含热和压力损失。模型导致关键性能指标的封闭式表达式,例如植物效率和体积能量密度,就组成效率和压力比而言。这些表达式的推导基于涉及温度和压力的同时时间变化的近似积分。近似值导致相对误差小于1%。模型表明压缩和扩展工作,植物效率和最高工艺温度显示最小。该模型还表明,对于给定的非二维存储容量和最大储层压力,最小化最大过程温度的植物的最大效率大约等于最大化效率的植物的最低效率。对于具有绝热洞穴和绝热热能储存单元的两阶段工厂,我们的分析模型预测体积能量密度在4.76%以内,表明它足够准确,可以用于初始植物设计。
摘要:将电池保持在特定温度范围内对于安全性和效率至关重要,因为极端温度会降低电池的性能和寿命。此外,电池温度是电池安全法规的关键参数。电池热管理系统(BTMS)在调节电池温度方面是关键的。虽然当前的BTMS提供实时温度监测,但缺乏预测能力却构成了限制。本研究介绍了一种新型混合系统,该系统将基于机器学习的电池温度预测模型与在线电池参数识别单元相结合。标识单元不断实时更新电池的电气参数,从而提高了预测模型的准确性。预测模型采用自适应神经模糊推理系统(ANFIS),并考虑了各种输入参数,例如环境温度,电池电流温度,内部电阻和开路电压。该模型通过基于实时数据动态调整热参数来准确地在有限时间范围内准确预测电池的未来温度。实验测试是在一系列AMB温度范围内对锂离子(NCA和LFP)圆柱细胞进行的,以在不同条件下验证系统的准确性,包括电荷状态和动态载荷电流。提议的模型优先考虑简单,以确保实时的工业适用性。
由安德烈·梅特罗(AndréMétro)撰写并于1955年出版的第一版《种植的桉树》(Eucalypts)在过去的二十年中一直在许多国家 /地区使用。在那个时期,在建立和种植技术领域都有重大发展。种植园报告的面积增加了五倍,现在至少达到了至少400万公顷,分布在澳大利亚和东印度属的自然分布区域以外的90个国家 /地区。桉树对开发世界的重要性越来越重要,其中八十个国家报告了他们对该属的兴趣。他们有很多用途,用于锯木。牙髓,木材基面板,杆和柱子以及环境和便利设施的种植。他们在生产可再生的燃木资源中起着特别重要的作用,它们为特定的重力和体积生产提供了极好的结合。一种或其他一种桉树对从半渗透到冷气或高山的广泛气候的适应性是它们作为Exotics取得显着成功的原因之一。
启动了电动合作社(规格)的太阳能,以帮助优化电池存储和太阳能储存的电池的计划,采购和操作。Specs是由美国能源部国家可再生能源实验室(NREL)选择的太阳能创新网络(SEIN)。Cliburn and Associates,LLC领导了项目团队,包括北卡罗来纳州清洁能源技术中心(NCCETC),Cobb Electric会员公司,Kit Carson Electric Cooperative,United Power,以及其他合作社以及公共电力公用事业公司以及批发供应商,市场专家,市场专家,以及储能行业的利益相关者。随着SEIN第2轮的高潮,在2021年夏季,Cliburn and Associates和NCCETC继续支持Specs资源的传播,并继续进行工作,从而扩大了我们的重点,因为它适用于新的开发模型和市场趋势。采购对公用事业侧存储和太阳能项目的挑战主要集中在早期决策上:定义高优先级用例,同时也探索如何从项目中获得更多价值的方法,并为其生活中的市场变化做准备。通过资产所有权或PPA/ESA合同的采购策略的选择也极大地影响了采购。随着资源收缩的增长,缺乏这种类型的采购的公开指南是急剧的。此简介(以演示格式)开始满足这些要点等的指导需求。从定义上讲,它没有尝试最终或完全解决该过程中的每个步骤。附加了详细的免责声明。尽职调查 - 研究本指南对您的特定情况的适用性 - 被认为是该信息的使用术语。
BMES 副总裁 Witt Duncan 表达了他对该项目的热情:“我们很高兴能够为 Vitis 提高美国电网可靠性和可持续性的努力做出贡献。Apache Hill 项目为 Vitis 提供了一个独特的机会,通过位于 ERCOT 系统内有利位置的先进开发项目来加快其上市时间。我们的团队在整个执行过程中无缝协作,我们期待看到该项目在需求增长空前的时代支持德克萨斯州的可靠电力供应。”
糖尿病微血管病是糖尿病患者的典型且严重的问题,包括糖尿病性视网膜病,糖尿病性肾病,糖尿病神经病和糖尿病性心肌病。2型糖尿病和糖尿病微血管并发症患者的不对称二甲基精氨酸(ADMA)的水平显着升高,这是一种一氧化氮合酶(NOS)的内源性抑制剂。ADMA通过其对内皮细胞功能,氧化应激损伤,炎症和纤维化的影响,促进了2型糖尿病中微血管并发症的发生和进展。本文回顾了糖尿病的ADMA和微血管并发症之间的关联,并阐明了ADMA导致这些并发症的潜在机制。它为预防和治疗2型糖尿病的微血管并发症提供了一种新的想法和方法。
抽象的植物细胞经常遇到正常生长和发育的一部分,或响应诸如洪水等环境压力的一部分。近年来,我们对低氧反应基因表达的多层控制的理解已大大增加。在此更新中,我们对调节对低氧水平的反应的表观遗传,转录,翻译和翻译后机制进行了广泛的看法。我们强调了翻译后修饰(包括磷酸化),次级信使,转录级联反应以及来自线粒体和网状网状(ER)的逆行信号如何如何控制转录因子活性和低氧基因转录的控制。我们讨论了通过专注于主动和抑制性的染色质修饰和DNA甲基化的表观遗传机制,以调节对氧气供应减少的反应。我们还描述了当前对紧密调节mRNA翻译以协调缺氧下有效基因表达的共同和转录机制的知识。最后,我们在该领域提出了一系列杰出的问题,并考虑了如何对低氧触发的监管层次结构的分子起作用的新见解,这可能为开发洪水的作物铺平道路。