桑迪亚国家实验室的研究人员开发了一种非线性控制技术,该技术利用了WEC沙漏的几何浮标设计和复杂的共轭控制(C3)策略,以优化多谐振条件下的功率吸收。沙漏浮标设计在波浪的重大运动或单个自由度的运动中运行,并且表现出比现有解决方案的优惠性能。沙漏浮标几何形状与海浪之间的独特相互作用产生了非线性立方存储效应,从而在操作过程中产生实际的能量存储或反应性。由于反应能力和能源存储系统(ESS)要求固有地嵌入了非线性浮标几何形状中,因此它仅需要简单的速率反馈控制,而无需存储或电源电子设备。通过专注于实现多谐和,这种开发可以增加WEC发电,使大小和重量减少,并有可能使现代WEC设计发电高效。
附加可配置功能可提高 SIPART DR21 过程控制器操作的舒适性和可靠性:• 变送器监视• 设定点限制• 设定点斜坡• x 跟踪• 控制偏差的过滤器和响应阈值• 作用方向的调整• 控制算法的特殊功能:根据控制信号从 PI(D) 控制切换到 P(D) 控制。从自动模式切换到手动模式和反之亦然,以及从所有其它操作模式切换到自动模式都很协调。• 操作变量的限制• 限值监视器• 重启条件:根据设备的当前负载,通过电源的存储效应可以桥接工作电压的短时间中断。如果发生较长时间的电源故障,已配置的参数和结构将保留在非易失性用户程序存储器中。最后一个操作模式、最后一个设定点和最后一个操作变量也会加载到非易失性存储器中。在电源中断或重新闭合后电压恢复时,控制器会以结构化操作模式、设定点和操纵值自动启动。电源故障后电压恢复时,可通过光学信号发出信号。• 自诊断:全面的监控程序会定期或在电源开启或看门狗复位后检查内部数据流量。如果检测到故障,则会在
土壤种子库通过时间存储效应和发芽池的功能来帮助维持物种多样性,这些池可以优化不同的环境条件。这些特征促进了本地植物群落的持久性,但是非本地物种的骚乱和相关的入侵等干扰会破坏这些储量,从而从根本上改变继任轨迹。在沙漠中尤其如此,在沙漠中,本地植物群落不太适应火灾。虽然对沙漠植物社区的影响并不少见,但有关生物库的短期和长期影响的信息较少。为了更好地了解沙漠种子库的火灾和入侵物种的影响,我们调查了土壤种子库的生物多样性,从1972年至2010年之间在北美莫哈韦(Mojave)的沙漠生态区之间燃烧的30种野生鱼类生物多样性。我们评估了FIFEREMIMES的特征(频率,燃烧和燃烧严重程度)如何与气候和侵入性植物相互作用,以A - ,B-和G-多样性的量度相互作用。由于B-多样性是对社区变异性的直接度量,并且揭示了有关生物多样性损失的重要信息,因此我们进一步研究了B多样性的嵌套和离职组成部分。平均烧伤位置的A-和G多样性通常高于未燃烧的参考地点,但是单个的变量对种子库多样性的模式几乎没有影响。燃烧的区域种子库倾向于由非母体入侵物种(主要是两种草)(Bromus Rubens,Bromus tectorum)和一个入侵型福布(Cicutarium)主导。我们观察到的最引人注目的模式是在A-,B-和G多样性中的集体急剧下降,其侵入性物种优势增加,表明种子库社区的均质化,并在结束后具有侵入性物种的殖民化。均质化的证据得到了降低和燃烧区域的嵌套增加的进一步支持。我们的发现强调了诸如植物入侵之类的生物学过程如何与火灾的干扰相结合,以改变沙漠生态系统中种子库组成和多样性的模式。