摘要:在航空航天环境中,芯片的高可靠性和低功耗至关重要。为了大幅降低功耗,芯片的锁存器需要进入掉电操作。在此操作中,采用非易失性(NV)锁存器可以保留电路状态。此外,在航空航天环境中,锁存器可能会被辐射粒子击中,在最坏的情况下会导致严重的软错误。本文提出了一种基于电阻式随机存取存储器(ReRAM)的NV锁存器,用于NV和鲁棒应用。所提出的NV锁存器具有低开销的抗辐射能力,并且可以在掉电操作后恢复值。仿真结果表明,所提出的NV锁存器可以完全提供针对单粒子翻转(SEU)的抗辐射能力,并可以在掉电操作后恢复值。与其他类似解决方案相比,所提出的NV锁存器可以将存储单元中的晶体管数量平均减少50%。
随着通过不安全通信渠道传输的数据量不断增加,大数据安全已成为网络安全领域的重要问题之一。为了解决这些问题并确保数据安全,需要一个强大的隐私保护密码系统。这种解决方案依赖于混沌加密算法,而不是标准加密方法,这些算法具有多级加密级别,包括高速、高安全性、低计算开销和程序能力等特点。在本文中,提出了一种使用线性反馈移位寄存器 (LFSR) 和基于混沌的量子混沌映射的安全图像加密方案。该方案的重点主要取决于来自算法输入的密钥。威胁形势、统计测试分析以及与其他方案的关键比较表明,所提出的算法非常安全,并且可以抵抗各种不同的攻击,例如差分攻击和统计攻击。与现有加密算法相比,所提出的方法具有足够高的灵敏度和安全性。几个安全参数验证了所提工作的安全性,例如相邻像素之间的相关系数分析、熵、像素变化率 (NPCR)、统一平均变化强度 (UACI)、均方误差 (MSE)、强力、密钥敏感度和峰值信噪比 (PSNR) 分析。所提技术生成的密码的随机性也通过了 NIST-800-22。NIST 的结果表明,密码具有高度随机性,不会产生任何类型的周期性或模式。
许多量子信息协议的实施需要对量子寄存器进行有效的初始化。在本文中,我们优化了一种粒子捕获协议,用于初始化与金刚石中单个氮空位 (NV) 中心相关的混合自旋寄存器。我们通过使用一系列微波、射频和光脉冲极化 NV 的电子和核自旋来初始化量子寄存器。我们使用速率方程模型来解释光脉冲作用下的粒子分布。将该模型与通过执行部分量子态层析成像获得的实验数据进行了比较。为了进一步增加自旋极化,我们提出了一种具有优化光脉冲的递归协议。我们还讨论了核和电子自旋泵送速率的相对值在实现最大自旋极化程度中的作用。
高效准备输入分布是在广泛领域获得量子优势的重要问题。我们提出了一种新颖的量子算法,用于高效准备量子寄存器中的任意正态分布。据我们所知,我们的工作首次利用了中间电路测量和重用 (MCMR) 的强大功能,广泛应用于一系列状态准备问题。具体而言,我们的算法采用重复直至成功方案,并且只需要期望常数界的重复次数。在所呈现的实验中,使用 MCMR 可以将所需量子比特减少多达 862.6 倍。此外,该算法可证明对相位翻转和位翻转错误均具有抵抗力,从而导致在真实量子硬件(支持 MCMR 的 Honeywell 系统模型 H0 和 H1-2)上进行首次同类经验演示。
本报告是由美国政府某个机构资助的工作报告。美国政府或其任何机构、其雇员、承包商、分包商或其雇员均不对所披露信息、设备、产品或流程的准确性、完整性或任何第三方的使用或此类使用结果做任何明示或暗示的保证,或承担任何法律责任或义务,或表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务,并不一定构成或暗示美国政府或其任何机构、其承包商或分包商对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
在不久的将来,量子计算可以为信息学的发展做出重大贡献[1]。尽管尚未构建量子计算机的实际实现,但它的存在似乎是可能的。因此,值得研究此类机器的性质。今天,我们知道Shor [2]和Grover [3]算法比其最佳古典对应物具有较低的综合性复杂性。量子计算机的另一个有希望的应用是量子模拟[4,5,6],即物理量子系统行为的组合模型。它给出了有效建模量子过程的可能性,使用经典量子不可能[7]。量子计算机可以模拟各种量子系统,包括费米子晶格模型[8,9],量子化学[10,11]和Quantum-tum-tum-fly filed field Theyories [12]。
031 Properties, LLC, Topeka, KS 1 Million Pennies, LLC, Topeka, KS 1 To Infinity, LLC, Overland Park, KS 1blackbook, Inc., Leawood, KS 1st Choice Labs, LLC, Wichita, KS 1st Pick Security, LLC, South Hutchinson, KS 10:13 Partners, LLC, Overland Park, KS 100 Day福克斯,LLC,威奇托,威奇托,KS 1000 Illinois,LLC,陆上公园,KS 103 E. Madison,LLC,Wichita,Wichita,Wichita,KS 104 Main Street,LLC,Lee's Summit,Lee's Mo 1040 Vermont,LLC,LLC,Lawrence,Lawrence,Lawrence,KS 10561 Mission Road,Mission Road,LLC,LALCE,LEANE REENTE,KS 11083,KS 11083,lc,LC,LC,LC。 LLC, Washington, DC 1133 SW Wanamaker Road Leasing, LLC, New York, NY 1133 SW Wanamaker Road Real Estate, LLC, New York, NY 115 West Myrtle, LLC, Wichita, KS 117 S Kallock St, LLC, Lee's Summit, MO 12 Two Productions, LLC, Overland Park, KS 12by2020, LLC, Overland Park, KS 1201S Barbershop,LLC,Wichita,KS 121 Main Street 67554,LLC,Hays,KS 1211 Entertainment,LLC,Hays,Hays,KS 123 Manhattan Storage,LLC,Manhattan,Manhattan,Manhattan,KS 125 N Market,L.C.Wichita, KS 13leads, LLC, Salina, KS 1301 E. Bond, LLC, Monett, MO 131 S Kallock St, LLC, Lee's Summit, MO 1315 N. Perth, LLC, Wichita, KS 133 Coffee, LLC, Baldwin City, KS 145 Wabash Partners, LLC, Wichita, KS 1509 S Hydraulic, LLC, Victoria, KS 1614 E Tulsa, LLC, Victoria, KS 167th Street Land, LLC, Topeka, KS 167th Street Land Manager, LLC, Las Vegas, NV 1706 Kansas Ave. Investors, LLC, Leawood, KS 1776list, LLC, Roeland Park, KS 18 Welding & Machine, LLC, Tescott, KS 1870, LLC, Wichita, KS 1920 East Washington Fredonia, LLC, Chanute, KS 1968 Unlimited, Inc., Bird City, KS 1984Hair, LLC, Hays, KS 2 Birds, LLC, Wichita, KS 2 Buoys and a Gull, LLC, Overland Park, KS 2 Guys BBQ, LLC, Lenexa, KS 2 To Toking You,LeNexa,Lenexa,KS 2 J的地板,LLC,堪萨斯城,KS 2 Kirks Fireworks,LLC,White Cloud,KS 2 Men&A Pipe Dream,LLC,Shawnee,Shawnee,KS
使用离散元法分析填充床热能存储中的热棘轮现象 填充床热能存储 (TES) 在能源技术中发挥着重要作用。在能量吸收过程中,热空气从上到下流过 TES 的内容物。在加热过程中,储热介质(散装材料)的膨胀会导致储热罐壁上的应力增加。这些发生的负载将通过离散模型来考虑。此外,有趣的是,在几个加载和卸载过程中负载如何变化(热棘轮现象)。在本文中,将研究如何使用 DEM 方法对这种行为进行建模。关键词:热能存储(TES)、离散元法(DEM)、热棘轮、热应力、校准 1. 引言 在 NEFI(工业新能源)项目过程中,应利用水泥厂约 300-400°C 的废热进行能量回收。为此,必须实施气流填充床热能存储 (TES) [10] 形式的存储。自 2018 年以来,维也纳技术大学工程设计和材料处理系 (KLFT) 与能源系统和热力学研究所 (IET) 合作开展项目,致力于实现这一目标。简而言之,填充床 TES 是装满散装材料的罐 [9]。散装材料用作储热介质。TES 系统最重要的目标是将热能的产生与其使用分离,因为可再生能源可以被邻近的公司使用。加热过程中,储热介质(块状材料)的膨胀会导致储热罐壁上的应力增加。先前的研究结果 [1]、[6]、[7]、[8] 表明,块状材料的接触力增加以及储热罐壁上相关应力的增加会导致损坏(见图 1)。
’173 和 ’LS173A 4 位寄存器包括 D 型触发器,具有图腾柱 3 态输出,能够驱动高电容或相对低阻抗负载。高阻抗第三状态和增强的高逻辑电平驱动使这些触发器能够直接连接到总线组织系统中的总线并驱动总线,而无需接口或上拉元件。最多 128 个 SN74173 或 SN74LS173A 输出可以连接到公共总线,并且仍分别驱动两个系列 54/74 或 54LS/74LS TTL 标准化负载。类似地,最多 49 个 SN54173 或 SN54LS173A 输出可连接到公共总线并分别驱动一个额外的 54/74 系列或 54LS/74LS TTL 标准化负载。为了最大限度地降低两个输出试图将公共总线置于相反逻辑电平的可能性,输出控制电路的设计应使平均输出禁用时间短于平均输出启用时间。