摘要。零知识证明(ZKP)是一个加密原始的原始性,使卖者能够说服一个陈述是真实的,而无需透露任何其他信息以外的任何其他信息。由于其强大的功能,其最实用的类型,称为零知识简洁的非交互性知识论据(ZKSNARK),已被广泛地部署在各种隐私性的应用程序中,例如加密货币和可验证的计算。尽管最新的zksnarks对于verifier来说是非常有效的,但供个人的计算开销仍然是数量级,而无法在许多应用中保证使用。该开销源于几个耗时的操作,包括大规模矩阵矢量乘法(MUL),数字理论变换(NTT),尤其是构成最大比例的多尺度乘法(MSM)。因此,需要进一步提高效率。
◊ 这些数字显示了在官方批准的旨在模拟各种驾驶条件的测试中获得的燃油消耗。表格显示了旨在更能代表日常驾驶的新循环。新的燃油消耗测试是根据指令 93/116/EEC 进行的。所有汽油发动机车辆都配备了三元催化转换器。上面列表中给出的结果并不表示或暗示对特定车辆燃油消耗的任何保证。汽车不会单独测试,同一型号的车辆之间不可避免地存在差异。此外,您的汽车可能包含特定的改装。此外,驾驶员的风格和道路交通状况,以及汽车的年龄和行驶里程以及维护历史都会影响燃油消耗。
Aarne Hummelholm 芬兰于韦斯屈莱大学信息技术学院 Aarne.hummelholm@elisanet.fi 摘要:我们生活在数字世界中,可以为人们提供更有效的治疗方法,使他们在家中生活更长寿,生活得更好。人们可以获得更好的家庭护理和预防性保健。人们可以轻松地在身体和手腕上携带便携式传感器和智能设备,这些传感器和智能设备可以实时将他们的生命信息传递到医院系统,医护人员甚至可以实时跟踪人体活力。尽管数字世界为改善医疗保健系统和使疾病分析更有效提供了良好的机会,但我们必须更深入地研究这个问题。设备和系统可能无法很好地协同工作。几乎每个制造商都有自己的技术解决方案,并且它们只能在特定环境中工作。医疗保健系统非常需要统一的概念和 IT 平台解决方案。当前使用的技术多种多样。标准正在发展,但尚未准备好。此外,远程医疗通信系统和设备的技术和功能要求以及在远程医疗中提供安全数据传输的要求缺乏。在新闻中我们经常可以看到和听到,有很多医疗设备损害了世界各地的患者健康。然后有很多漏洞
整个轮廓坚固厚实,但又不失流畅精致。独特的“鲨鱼鳍” B 柱延伸至“浮动”车顶线,而两排闪亮的 LED 灯可照亮激进的贴路下格栅和聚光灯。镀铬上格栅优雅地融入了双 V 形。从任何角度看,您都会发现惊喜、原创想法和令人愉悦的细节:目前的设计图标。
旨在提供以标准中性形式归档和检索数字产品和技术信息(包括 3D CAD 和 PDM 数据)的功能,可在整个产品生命周期内读取和重复使用,
摘要。最近的作品表明,量子周期可以用于打破许多流行的构造(某些块密码,例如偶数,多个Mac和AES。。。 )在叠加查询模型中。到目前为止,所有破碎的结构都表现出强大的代数结构,使得能够定期发挥单个输入块的定期功能。恢复秘密时期允许恢复钥匙,区分,打破这些模式的确定性或真实性。在本文中,我们介绍了量子线性化攻击,这是一种使用Simon的算法来定位叠加查询模型中MAC的新方法。特别是,我们使用多个块的输入作为隐藏线性结构的函数的接口。恢复此结构允许执行伪造。我们还提出了使用其他量子算法的这种攻击的一些变体,这些算法在量子对称地crypt-分析中不太常见:Deutsch's,Bernstein-Vazirani和Shor's。据我们所知,这是这些算法第一次用于伪造或钥匙恢复攻击中。我们的攻击破坏了许多可行的MAC,例如LightMac,PMAC和许多具有(经典的)超越生物结合安全性(Lightmac+,PMAC+)或使用可调整的块密码(ZMAC)的变体。更普遍地,它表明,构建可行的量子安全性PRF可能是一项具有挑战性的任务。
在本研究中,我们将使用 Ericson (2009) 中使用的电热水器,结合 Ma 等人 (2014) 中描述的模拟设置,以及 Kepplinger 等人 (2015) 中定义的参数,用于消耗和优化约束。重点是通过调整电热水器的设定值,在现有的不平衡市场上销售灵活性来创造收入。为了最大化收入,我们使用了一个 EMPC 控制器,该控制器考虑了未来的能源消耗成本、改变设定值的能源成本和不平衡价格 (x- 1)。不平衡定价是在交付后确定的,这就是为什么在 EMPC 优化中考虑 x-1 定价的原因。在我们的模拟中,粒度为 15 分钟。
PIH 于 2024 年 8 月 9 日发布了修订后的 PIH 通知 2024-26:REV-1,该通知最终确定了住房选择券 (HCV) 和基于项目的优惠券 (PBV) 计划的房地产实物检查国家标准 (NSPIRE) 的行政程序。随着 2024 年 7 月 5 日的《联邦公报》通知,PIH 宣布将 HCV 和 PBV 计划的合规日期延长至 2025 年 10 月 1 日。此通知适用于所有 PHA,包括管理 HCV 计划的搬迁工作 PHA。此前,公共住房机构 (PHA) 必须通知 HUD,如果他们要将 NSPIRE-V 的实施推迟到 2023 年 10 月 1 日之后。通过此延期,只有决定在新的合规日期 2025 年 10 月 1 日之前实施 NSPIRE-V(或从提前实施日期更改为全面延期日期)的公共住房机构,才必须通知 HUD 他们计划过渡到 NSPIRE-V 的日期。阅读通知了解更多信息。
◊ 这些数字显示了在官方批准的旨在模拟各种驾驶条件的测试中获得的燃油消耗。表格显示了旨在更能代表日常驾驶的新循环。新的燃油消耗测试是根据指令 93/116/EEC 进行的。所有汽油发动机车辆都配备了三元催化转换器。上面列表中给出的结果并不表示或暗示对特定车辆燃油消耗的任何保证。汽车不会单独测试,同一型号的车辆之间不可避免地存在差异。此外,您的汽车可能包含特定的改装。此外,驾驶员的风格和道路交通状况,以及汽车的年龄和行驶里程以及维护历史都会影响燃油消耗。
摘要。这项工作介绍了综合征编码(SDITH)签名方案的第一个硬件实现,该方案是NIST PQC过程中标准化后量子安全数字签名方案的候选者。sdith的硬度基于基于保守的代码假设,它使用了多方 - 机票(MPCITH)结构。这是基于传统解码问题的基于代码的签名方案的第一个硬件设计,仅在野餐之后仅是MPCITH构造的第二个硬件。这项工作提出了优化的设计,以实现最佳的区域效率,我们使用Time-Area产品(TAP)度量进行评估。这项工作还通过将签名生成算法分为两个阶段,即OfflINE和在线阶段,以优化整体时钟周期计数,也提出了一种新颖的硬件体系结构。针对所有SDITH参数(包括NIST安全水平)的参数构成了密钥生成,签名生成和签名验证的硬塑料设计,既综合征解码基本场(GF256和GF251),因此对Sdith Speciififations进行了构象。硬件设计进一步支持秘密共享分裂,以及可以在此和其他NIST PQC候选中应用的HyperCube优化。与优化的AVX2软件实现相比,这项工作的结果导致了硬件设计,其时钟周期的大幅降低,大多数操作的范围为2-4倍。我们的密钥一代巨大的软件大大优于软件,尽管时钟速度的速度明显更快,但运行时减少了11-17倍。在Artix 7 FPGA上,我们可以在55.1 kcycles中执行关键生成,6.7 mcycles的签名生成以及nist L1参数的8.6 mcycles的签名验证,对于GF251而言增加,以及L3和L5参数。