我们为不依赖于人类反馈的大型语言模型(LLMS)提出了一种新颖的增强学习(RL)框架。相反,我们的方法使用模型本身中的交叉注意信号来获得自我监督的奖励,从而指导对模型策略的迭代微调。通过分析模型在生成过程中如何“参加”输入提示,我们构建了及时的覆盖,重点和连贯性的度量。然后,我们使用这些措施来对候选响应进行排名或评分,提供了奖励信号,鼓励模型产生良好的一致,主题文本。在与标准策略梯度方法的经验比较和合成偏好模型的RL微调中,我们的方法在非RL基线的迅速相关性和一致性方面显示出显着的提高。虽然它尚未与完全监督的RLHF系统的性能相匹配,但它突出了使用最小的人类标记来扩展对齐的重要方向。我们提供了详细的分析,讨论潜在的局限性,并概述了将基于跨注意的信号与较少人类反馈相结合的未来工作。
8中国;北京Xicheng区Xicheng区北利希路167号,北京Xicheng区,8中国;北京Xicheng区Xicheng区北利希路167号,北京Xicheng区,
脑肿瘤的特征是脑组织异常生长,因其对全球发病率和死亡率的影响而成为一项重大的医学挑战。脑肿瘤有多种表现形式,从良性到恶性,后者尤其具有侵袭性且易于转移 (1)。脑肿瘤的病因复杂,包括放射线暴露、遗传易感性和家族史等因素,因此需要早期发现和准确诊断 (2)。在脑肿瘤诊断领域,磁共振成像 (MRI) 因其更高的空间分辨率和软组织对比度而成为优于计算机断层扫描 (CT) 的检查方式。这使得 MRI 成为脑肿瘤病例术前评估、治疗管理和生存预测所必需的 (3)。然而,MRI 扫描中传统的手动分割方法虽然是黄金标准,但却存在固有的效率低下和主观差异性,因此有必要探索自动化技术 (4、5)。近年来,深度学习模型(例如 Ma 等人提出的模型)在自动脑肿瘤分割方面取得了重大成功。这些模型擅长捕捉局部和全局上下文特征,但通常会遇到梯度消失和过拟合的问题,尤其是在较深的网络层中。Kumar 等人(7)通过将 ResNet50 与全局平均池化相结合来解决这些问题,以增强各种肿瘤类型的肿瘤分类。在此基础上,我们的研究引入了一种先进的连续学习框架,用于从 MRI 图像中分割脑肿瘤,如图 1 所示。我们的方法与现有技术不同,它集成了多尺度空间蒸馏和伪标记策略。这种方法不仅克服了以前模型中出现的梯度消失和过拟合的局限性,而且还解决了灾难性遗忘问题——这是连续学习模型中常见的挑战。与依赖于保留数据的传统方法不同,我们的研究引入了一种先进的连续学习框架,用于从 MRI 图像中分割脑肿瘤,如图 1 所示。我们的方法与现有技术不同,它集成了多尺度空间蒸馏和伪标记策略。这种方法不仅克服了以前模型中出现的梯度消失和过拟合的局限性,而且还解决了灾难性遗忘问题——这是连续学习模型中常见的挑战。与依赖于保留数据的传统方法不同,我们的研究引入了一种先进的连续学习框架,用于从 MRI 图像中分割脑肿瘤,如图 1 所示。
绿色流动性在21世纪的需求量很高。现代城市的快速增长导致了运输的增加,这导致了大量流通,化石燃料的稀缺性和日益增长的环境问题。因此,应使用新兴清洁剂技术来控制和减少车辆排放[1]。混合动力汽车(HVS),以通过将它们与电动机结合起来减少内燃机(ICES)。通过减少碳和其他污染排放,电动汽车(EV)对环境产生了积极影响。目前,接近零排放车辆的开发是一个巨大的挑战。evs由可再生能源(例如氢)所推动的是一个可行的选择,因为它们仅发出天然副产品,例如水而不是燃烧气体,而不是对空气质量和人口健康不利的燃烧气体。随着电池电动汽车(BEV)的出现,温室气体(GHG)的问题已部分解决。BEV是零发射车辆,由电池发电驱动。BEV不会从根本上减少温室气体排放,因为电力主要是由热植物产生的[2]。BEV有自己的腰靠背,例如有限的驾驶范围,较长的电池充电时间和电池安全性。因此,汽车行业开发了燃油电动汽车(FCEV),最近受到了广泛关注。FCEV由从燃料电池接收电源的电动机提供动力。氢与空气中的氧气结合在一起是FCEV中的主要能量动机。燃料电池具有许多好处,包括干净的燃料,高效率,没有有害排放和低声声音。插入式燃料电池混合动力汽车和燃料电池范围扩展器也引起了很多关注[3,4]。使用燃料电池作为EV的唯一电源时,需要一个启动系统。因此,汽车制造商开发了燃料电池混合动力汽车(FCHEVS),该电动汽车由燃料电池和一个或多个辅助电源(例如电池和超级电容器)提供动力。Daimler Mercedes Benz F-Cell,GM雪佛兰Volt,Toyota FCHV和Honda FCX都是混合动力汽车(HEVS),具有燃料电池 +电池的能量配置。由于FCHEVS的能源进料在燃料电池和辅助功率之间交替,因此需要可靠的能源管理系统(EMS)来根据车辆的操作模式或电源需求在燃料电池和辅助功率之间分发功率。成功的EMS不仅可以保证车辆的正常运行,还可以提高效率,解决物理限制,延长使用寿命并实现全面的燃油经济性。目前,中国香港特殊行政区(香港SAR)尚未发布最新的氢能战略。尽管目前的政策存在缺点,但香港的研究机构和企业仍致力于开发氢气流动性,以实现碳中立性和绿色运输。目前,带有最近,香港生产力委员会(HKPC)推出了香港的第一个燃料电池商业电动汽车 - 带有混合燃料电池和电池系统的氢供电叉车,如图1所示。
空间幻象技术的最新进展已实现了分析组织形态,细胞组成和生物分子表达模式的新方法。这些进步正在促进数字病理新兴领域中新的计算工具和定量技术的开发。在这篇综述中,我们调查了使用数字化的组织病理学幻灯片和补充材料开发用于空间映射的OMIC数据分析的计算方法的当前趋势,并重点介绍了与泌尿生殖学肿瘤学研究有关的工具和应用。评论包含三个部分:1)组织幻灯片分析的图像处理方法的概述; 2)与空间解决的OMIC数据分析的机器学习集成; 3)讨论当前局限性和未来在临床决策过程中整合机器学习的方向。
重型燃气轮机由于发电率较低,灵活性和热效率而在发电中发挥了越来越重要的作用。在严格的环境条件下,燃气轮机的主要子系统(如压缩机,燃烧器和涡轮机)在运行时间内降低,这在很大程度上影响了系统的效率和生产力。因此,开发有效方法以监测重型燃气轮机的性能降解以进行系统预测性维护,从而提高机器的效率和生产率至关重要。本文提出了一种新的物理知情的机器学习方法,以通过无缝整合热力学热平衡机制,组件特征,多源数据和人工神经网络模型来预测燃气轮机的降解。考虑到流量,质量和能量平衡,建立了基于机制的热力学模型,然后将其集成到系统水平,以在不同条件下对燃气轮机进行性能模拟。系统模型能够有效地模拟那些无法测量的参数的值(例如gt排气流)或不准确测量(例如燃油流)。基于机器学习的数据清洁方法用于预处理燃气轮机的多元原始数据。使用ISO条件下的物理信息模型获得的设计性能数据和校正值之间的差异用于评估性能降解。从
参考文献 1] Klaus Greff 等人。“LSTM:搜索空间漫游。”IEEE 神经网络和学习系统学报,28 (2015): 2222-2232。 https://doi.org/10.1109/tnnls.2016.2582924。[2] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A.(2014)。更深入地了解卷积。2015 IEEE 计算机视觉和模式识别会议 (CVPR),1-9。 https://doi.org/10.1109/CVPR.2015.7298594。[3] Lee, J., Jun, S., Cho, Y., Lee, H., Kim, G., Seo, J., & Kim, N. (2017)。医学成像中的深度学习:概述。韩国放射学杂志,18,570 - 584。 https://doi.org/10.3348/kjr.2017.18.4.570。[4] Klyuchnikov, N., Trofimov, I., Artemova, E., Salnikov, M., Fedorov, M., & Burnaev, E. (2020)。NAS-Bench-NLP:自然语言处理的神经架构搜索基准。IEEE Access,PP,1-1。https://doi.org/10.1109/access.2022.3169897。[5] Lu, Z., Whalen, I., Dhebar, Y., Deb, K., Goodman, E., Banzhaf, W., & Boddeti, V. (2019)。用于图像分类的深度卷积神经网络的多目标进化设计。IEEE Transactions on Evolutionary Computation,25,277-291。https://doi.org/10.1109/TEVC.2020.3024708。[6] Zhang, T., Lei, C., Zhang, Z., Meng, X., & Chen, C. (2021)。AS-NAS:用于深度学习的具有强化进化算法的自适应可扩展神经架构搜索。IEEE 进化计算学报,25,830-841。 https://doi.org/10.1109/TEVC.2021.3061466。[7] Sun, Y., Sun, X., Fang, Y., Yen, G., & Liu, Y.(2020)。一种用于进化神经架构搜索算法性能预测器的新型训练协议。IEEE 进化计算学报,25,524-536。https://doi.org/10.1109/TEVC.2021.3055076。[8] Verma, M., Sinha, P., Goyal, K., Verma, A., & Susan, S. (2019)。一种用于爬山领域的神经架构搜索的新框架。2019 IEEE 第二届人工智能与知识工程国际会议 (AIKE),1-8。https://doi.org/10.1109/AIKE.2019.00009。[9] Zhang, H., Jin, Y., Cheng, R., & Hao, K. (2020)。通过采样训练和节点继承实现注意力卷积网络的有效进化搜索。IEEE
渔业旁观,与商业或娱乐性的未经使用或未托管的物种的相互作用(Davies等,2009)对许多物种产生负面影响,包括死亡率,使旁观者的减少成为海洋保护和薄纱管理的主要重点2018; Nelms等人,2021年;当旁观物包含受保护的物种,例如海洋哺乳动物,海龟,鲨鱼和海鸟(Moore等,2009; Wallace等,2013; Lewison et al。,2014; Komoroske and Lewison和2015; 2015; 2015; 2015; 2015年;降低旁观可以提高商业曲折的效率和有效性(Richards等,2018; Noaa Fisheries,2022; Senko等,2022),并限制了由于高水平的受保护物种相互作用而导致的填充风险。然而,鉴于大多数bychip的物种的相互作用率低以及受保护物种相互作用的稀有发生率的较低相互作用率,估计杂草捕获的水平可能具有挑战性(McCracken,2004;Amandè等,2012; Martin等,2015; 2015年; Stock等,2019)。渔业管理计划和法规通常需要估算和监视给定层中给定物种的兼容量。根据管辖区的不同,过度的旁观,定义不同,可能会导致调整习惯的监管变化,弯曲齿轮的变化,限制性活动的限制或整个封闭式封闭。1362)。因此,准确,准确地确定在填充中旁观的水平的能力是填充管理的关键组成部分。在美国,《马格努森 - 斯文森渔业保护与管理法》(MSA),濒危物种法(ESA)和海洋哺乳动物保护法(MMPA)(MMPA)适用于旁观物种和填充物,并要求管理机构来监视旁注。在MSA(50CFR§600.350)下,应最小化或避免征用,而受保护的物种兼容不能超过ESA(50 CFR 216.3)下的允许采取或超过MMPA下潜在的生物移除水平(U.S.C.通常,为了实现旁观监测目标,训练有素的钓鱼者观察者被放置在钓鱼容器上,以监视受保护的物种相互作用,并记录捕获和旁捕虫(NOAA Fisheries,20222),因为这些信息不需要记录在日志中。这些观察者收集的数据用于通过各种统计或数学手段来估计填充中的兼例水平。在许多情况下,基于样本的比率估计器(例如广义比率估计器或Horvitz-Thompson估计器)可以提供对旁观的无偏估计(McCracken,2000,2019)。还实施了基于模型的估计,包括通用线性模型(GLM),零插入模型,跨栏模型,贝叶斯模型和广义添加剂模型(GAMS),以说明少数协变量对纤维状雪橇的影响(McCracken,2004; Martin等; Martin等,2015; 2015年; 2015年;从这种方法中估算的临界估计,然后进一步介绍了在给定时期内(通常为一年)对某些物种的兼容限制的过程(Moore等,2009),以及其他下游产品和