摘要 一种用于区分健康、发作期和发作间期脑电图信号的自动检测系统在临床实践中具有重要意义。本文介绍了一种用于癫痫和癫痫发作检测的低复杂度三类分类 VLSI 系统。设计的系统包括基于离散小波变换 (DWT) 的特征提取模块、稀疏极限学习机 (SELM) 训练模块和多类分类器模块。在三级 DWT 中引入了 Daubechies 4 阶小波的提升结构,以节省电路面积并加快计算时间。SELM 是一种新型的机器学习算法,具有低硬件复杂度和高性能,用于片上训练。由于其分类精度高,因此首次设计了一对一的多类非线性 SELM。设计的系统在 FPGA 平台上实现,并使用公开的癫痫数据集进行评估。实验结果表明,设计的系统在低维特征向量下实现了高精度。关键词:低复杂度,分类,DWT,多类,SELM 分类:集成电路(存储器,逻辑,模拟,RF,传感器)
试图在大型系统上达到完全精确度显然面临着所谓的“指数墙”,这限制了最精确方法对更复杂的化学系统的适用性。到目前为止,用经典超级计算机执行的最大计算量也只包括数百亿个行列式 4 ,有 20 个电子和 20 个轨道,随着大规模并行超级计算机架构的进步,希望在不久的将来解决接近一万亿个行列式(24 个电子、24 个轨道)的问题。5 鉴于这些限制,必须使用其他类别的方法来近似更大的多电子系统的基态波函数。它们包括:(i) 密度泛函理论 (DFT),它依赖于单个斯莱特行列式的使用,并且已被证明非常成功,但无法描述强关联系统 6 – 8 ; (ii) 后 Hartree - Fock 方法,例如截断耦合团簇 (CC) 和组态相互作用 (CI) 方法,即使在单个 Slater 行列式之外仍然可以操作,但由于大尺寸分子在 Slater 行列式方面的计算要求极高,因此不能应用于大尺寸分子。9 – 16 一个很好的例子是“黄金标准”方法,表示为耦合团簇单、双和微扰三重激发 CCSD(T)。事实上,CCSD(T) 能够处理几千个基函数,但代价是巨大的运算次数,而这受到大量数据存储要求的限制。17 无论选择哪种化学基组(STO-3G、6-31G、cc-pVDZ、超越等),这些方法都不足以对大分子得出足够准确的结果。 Feynman 18,19 提出的一种范式转变是使用量子计算机来模拟量子系统。这促使社区使用量子计算机来解决量子化学波函数问题。直观地说,优势来自于量子计算机可以比传统计算机处理“指数级”更多的信息。20 最近的评论提供了有关开发专用于量子化学的量子算法的策略的背景材料。这些方法包括量子相位估计(QPE)、变分量子特征值求解器(VQE)或量子虚时间演化(QITE)等技术。21 – 24 所有方法通常包括三个关键步骤:(i)将费米子汉密尔顿量和波函数转换为量子位表示;(ii)构建具有一和两量子位量子门的电路;(iii)使用电路生成相关波函数并测量给定汉密尔顿量的期望值。重要的是,目前可用的量子计算机仍然处于嘈杂的中型量子(NISQ)时代,并且受到两个主要资源的限制:
信息截至28.10.24,并根据2025年建议的课程可用性。国际学习机会将单独列出。此表仅是指南;可用性可能会改变。请参阅手册和班级时间表,以确认课程可用性。*这些课程(6000和7000)是共同招募的本科/研究生;需要许可。** 2025提供要确认的。***受纪律主任的许可。与细胞核联系:学生枢纽以寻求进一步的帮助。Cricos提供商代码00098G
Tadesse Hailu Ayane A,Satyasis Mishra B,Davinder Singh Rathee C,Harish Kalla d a Dept.,ECE,SEEEC,SIGNAL和IMAGE PROCESTING SIG,ADAMA科学技术大学,Adama,埃塞俄比亚文章历史:收到:2021年1月10日;修订:2021年2月12日;接受:2021年3月27日;在线发布:2021年6月4日摘要:这项研究工作提出了一种新颖的快速且坚固的模糊C表示基础(FRFCM)分割技术,用于从MR(磁共振)图像中检测脑肿瘤,该技术可以告知放射线医生和医生脑肿瘤的细节。 这种分割技术已用于消除里奇亚的噪声和形态重建的图像。 MR(磁共振)图像特征已通过流行的灰度共发生矩阵(GLCM)和离散小波变换特征提取技术提取。 提取的特征应用于基于拟议的PSO(粒子群优化)的极限学习机(ELM),以分类恶性和良性脑肿瘤的类型,以进行视觉定位。 此外,将将分类结果与现有支持向量机和相关向量机模型进行比较。 在这项研究工作中,PSO算法已更新了拟议的新型多类极限学习机分类器模型的权重,以提高分类器的性能。 为了展示研究的独特性,此外,研究工作提出了通过嵌入式系统平台实施检测和分类的,这可能是研究工作的产品结果。 关键字:,ECE,SEEEC,SIGNAL和IMAGE PROCESTING SIG,ADAMA科学技术大学,Adama,埃塞俄比亚文章历史:收到:2021年1月10日;修订:2021年2月12日;接受:2021年3月27日;在线发布:2021年6月4日摘要:这项研究工作提出了一种新颖的快速且坚固的模糊C表示基础(FRFCM)分割技术,用于从MR(磁共振)图像中检测脑肿瘤,该技术可以告知放射线医生和医生脑肿瘤的细节。这种分割技术已用于消除里奇亚的噪声和形态重建的图像。MR(磁共振)图像特征已通过流行的灰度共发生矩阵(GLCM)和离散小波变换特征提取技术提取。提取的特征应用于基于拟议的PSO(粒子群优化)的极限学习机(ELM),以分类恶性和良性脑肿瘤的类型,以进行视觉定位。此外,将将分类结果与现有支持向量机和相关向量机模型进行比较。在这项研究工作中,PSO算法已更新了拟议的新型多类极限学习机分类器模型的权重,以提高分类器的性能。为了展示研究的独特性,此外,研究工作提出了通过嵌入式系统平台实施检测和分类的,这可能是研究工作的产品结果。关键字:这将帮助医务人员,特别是让放射线医生和医生了解肿瘤的严重性。此外,嵌入式系统平台已用于通过GUI(图形用户界面)显示分类,分割和功能。
适用对象 - 0-15 岁有或无健康问题的儿童。简要说明 - 一种旨在帮助探索儿童疾病遗传学的生物资源。D-CYPHR 是一个专门为 0-15 岁儿童设计的研究组织库。这将有助于健康研究 - 从更好地了解心理健康到对抗糖尿病。涉及的内容 - 问卷和唾液样本套件(所有这些都可以在家完成。儿童和父母可以同意就未来的学习机会与孩子联系。
对于需要专业学习的每个行动步骤,都会阐明以下信息:参与学习的个人/群体、内容、领导学习的个人/组织、课程/会议的类型以及频率。此外,行动步骤中还会阐明参与者展示学习成果的具体方式(例如教学变化)。学习机会与 Danielson 框架的一个组成部分保持一致。如果需要资金来支持专业学习机会,则会在行动步骤中阐明,金额与电子赠款中输入的金额相匹配。
充满活力的机会。持久的联系。与来自迈阿密、芝加哥、多伦多、北京和香港的凯洛格合作学校的高素质学习伙伴建立国际网络。在凯洛格 EMBA 全球网络和精心挑选的全球沉浸式学习目的地举办的全球选修课中体验跨文化合作的力量。结合我们德国主校区的课程模块,这些国际学习机会将磨练您在特定行业的专业知识,并增强您作为领导者的全球视野。