人工智能(AI)可以在向预测,预防和个性化医学转变的转变中发挥至关重要的作用,前提是我们受到患者投入的科学的指导。患者报告的结果指标(PROM)代表了一个独特的机会,可以从患有健康状况的人们那里捕捉经验知识,并使其与所有其他利益相关者具有科学意义。尽管如此,使用标准化结果的吸收有限,包括研究和医疗保健系统中的舞会。本观点文章讨论了大规模使用舞会的挑战,重点是多发性硬化症。AI方法可以通过检查目前提供的护理卫生系统以及加速研究和创新来实现学习卫生系统,从而改善护理质量。但是,我们认为,无论是与研究,临床实践还是卫生系统政策有关的AI的进步至关重要,不是孤立地开发出来,而是与他们合作地实施“对“人”。与患者投入的科学实施是全球多发性硬化症(PROM)倡议的核心,将确保我们最大程度地利用AI对MS的人的潜在利益,同时避免后果。
- 培训语言模型以人为反馈的指示 - 直接偏好优化:您的语言模型是秘密的奖励模型 - 精细的人类反馈为语言模型培训提供了更好的奖励 - 开放问题和从人类反馈>的强化基本限制
使用机器学习(ML)算法在制造过程中嵌入的传感器内部嵌入的信息的进步和识别,以更好地决策成为构建数据驱动的监视系统的关键推动因素。在激光粉床融合(LPBF)过程中,基于数据驱动的过程监视正在广受欢迎,因为它允许实时组件质量验证。加上制造零件的实时资格具有重要的优势,因为可以降低传统的生产后检查方法的成本。此外,可以采取纠正措施或构建终止以节省机器时间和资源。然而,尽管在满足LPBF流程中的监视需求方面取得了成功的发展,但由于不同的过程空间,在处理来自激光材料互动的数据分布的变化时,对ML模型在决策方面的鲁棒性进行了更少的研究。受到ML中域适应性的想法的启发,在这项工作中,我们提出了一种基于深度学习的无监督域适应技术,以解决由于不同的过程参数空间的数据分布的转移。在两个不同的316 L不锈钢粉末分布(> 45 µm和<45 µm)上获得了从LPBF过程区域到三个机制到三个方案的声学发射区到三个方案的声波形式。对应于用不同激光参数处理的粉末分布的声波形的时间和光谱分析显示,数据分布中存在偏移,随后用建议的无监督域适应技术对其进行处理,以具有可以普遍化的ML模型。进一步,两个分布之间提议的方法的预测准确性表明,不受欢迎地适应新环境的可行性并改善了ML模型的推广性。
水是所有人类活动的必要组成部分。根据联合国世界水评估计划,每天,200万吨污水,制造和农业废物被排放到世界水中。由于人口需求和减少清洁水供应以及可用的水污染管理机制;迫切需要使用计算方法智能管理可用的水。本文提出了人工神经网络,特别是卷积神经网络(CNN),用于自动化水杂质检测。为了完善模型,使用管道中的浑浊水的图片来检测事件。深度学习的算法通过4220张图像的数据集进行了大量培训后达到96.3%的准确性,反映了各种污染的污染。这表明该模型可用于水系统污染检测。
迫切需要发现治疗 COVID-19(由 SARS-CoV-2 病毒引起的流行病)的方法。考虑到发现、开发和临床测试的时间表,从库筛选开始的标准小分子药物发现工作流程是不切实际的。为了加快患者测试的时间,我们在此探索了在临床环境中经过一定程度测试的小分子药物(包括已批准的药物)作为 COVID-19 的可能治疗干预措施的治疗潜力。我们这个过程的动机是一个称为多药理学的概念,即可能具有治疗潜力的脱靶相互作用。在这项工作中,我们使用了深度学习药物设计平台 Ligand Design 来查询获得联邦批准或正在进行临床试验的内部小分子药物集合的多药理学概况,目的是识别预计会调节与 COVID-19 治疗相关的靶标的分子。我们努力的成果是 PolypharmDB,这是一种药物资源,以及它们在人类蛋白质组中预测的蛋白质靶标结合。挖掘 PolypharmDB 产生了预测与 COVID-19 的人类和病毒药物靶标相互作用的分子,包括与病毒进入和增殖相关的宿主蛋白以及与病毒生命周期相关的关键病毒蛋白。此外,我们收集了针对两个特定宿主靶标 TMPRSS2 和组织蛋白酶 B 的优先批准药物集合,最近显示它们的联合抑制可以阻止 SARS-CoV-2 病毒进入宿主细胞。总体而言,我们证明了我们的方法有助于快速响应,确定了 30 种优先候选药物,用于测试它们可能用作抗 COVID 药物。使用 PolypharmDB 资源,可以在一个工作日内为新发现的靶标确定重新利用的候选药物。我们正在免费向合作伙伴提供我们确定的分子的完整列表,以便合作伙伴能够对它们的功效进行体外和/或临床测试。关键词:SARS-CoV-2 病毒、COVID-19、冠状病毒、TMPRSS2、组织蛋白酶 B、宿主-靶标、多药理学、脱靶相互作用 缩写:SARS-CoV-2:严重急性呼吸综合征相关冠状病毒 COVID-19:冠状病毒病-2019 3CLpro:木瓜蛋白酶样蛋白酶 PLpro:主要蛋白酶 RdRp:非结构蛋白 ACE2:血管紧张素转换酶 2 TMPRSS2:跨膜蛋白酶丝氨酸 2
1. 首先将双手举起,摆动手指,并用嘴巴发出柔和的呼呼声 2. 反复搓手掌 3. 打响指 4. 拍大腿,左右交替 5. 拍手或跺脚 6. 大声拍手 7. 然后反转……直到回到摆动手指和柔和呼呼的声音! 8. 你刚刚制造了一场暴风雨!
离线增强学习(RL)旨在根据历史数据改善目标政策而不是行为政策。离线RL的一个主要问题是分配转移导致Q值估计的分布转移。大多数现有的作品都集中在行为克隆(BC)或最大化Q学习方法以抑制分布转移。BC方法试图通过将目标策略限制为离线数据来减轻转移,但它使学习的策略高度保守。另一方面,最大化Q学习方法采用悲观的机制来通过根据动作的不确定性来最大化Q值和惩罚Q值来产生动作。但是,生成的措施可能是算法的,从而导致预测的Q值高度不确定,这反过来又将误导该策略以生成下一个动作。为了减轻分配转移的不利影响,我们建议通过统一Q学习和行为克隆以应对探索和剥削难题来隐含和明确地限制政策。对于隐式约束方法,我们建议通过致力于使目标策略和行为策略的行动无法区分的生成对抗网络统一行动空间。对于显式约束方法,我们会提出多重重要性采样(MIS),以了解每个状态行动对的优势权重,然后将其用于抑制或充分使用每个状态行动对。D4RL数据集上的广泛实验表明,我们的方法可以实现出色的性能。MAZE2D数据上的结果表明,MIS与单个重要性采样更好地解决了异质数据。我们还发现MIS可以有效地稳定奖励曲线。关键字:Q学习,行为克隆,悲观机制,多重重要性采样。
课程目标:本课程采用一种实用的方法来分析生物医学数据。这样做,三个目标努力。首先,学生将熟悉不同分析方法的必要理论背景,使他们能够了解为什么某些方法在某些情况下是合适的以及为什么其他方法不适合。第二,学生将获得分析生物医学数据所需的实用,动手技能,包括数据管理,算法开发和适当的代码库开发。这些技能将使学生在学术研究和行业内的独立研究项目中做好准备。第三,学生将学习如何解释,可视化和总结分析结果后完成。应用分析方法只是科学发现的挑战的一半。本课程的第三个目标是培训学生将科学分析的结果收集到一种格式,该格式可以与其他研究人员共享并理解科学发现。
医学是深度学习模型的重要应用领域。该领域的研究是医学专业知识和数据科学知识的结合。在本文中,我们引入了一个开放的三维颅内动脉瘤数据集 IntrA,而不是二维医学图像,这使得基于点和基于网格的分类和分割模型的应用成为可能。我们的数据集可用于诊断颅内动脉瘤和提取颈部以进行医学和深度学习其他领域(如正常估计和表面重建)的夹闭手术。我们通过测试最先进的网络提供了一个大规模分类和部分分割的基准。我们还讨论了每种方法的性能,并展示了我们数据集的挑战。发布的数据集可以在这里访问:https://github.com/intra3d2019/IntrA。
摘要:在人工智能(AI)和机器学习(ML)技术的迅速发展之后,面部识别技术已成为生物识别领域内的重要研究重点。本文研究了AI和ML算法的最新进步,以提高面部识别的准确性和速度。首先,对面部识别技术的发展进行了全面审查。它可以追溯从传统方法到深度学习技术的应用,同时还总结了现有技术的优点和局限性。随后,本文中使用的关键技术在细致的情况下详细阐述了这些卷积神经网络(CNN),深度学习功能提取,转移学习,以及面部识别中的注意机制。在处理复杂的场景,不同的照明条件和遮挡情况时,这些显着增强了模型的处理能力。此外,本文对隐私保护和道德问题进行了探索,它提出了旨在在不损害身份绩效的情况下增强数据保护和隐私安全的策略。最后,这项研究的主要发现被封装,并概述了未来的研究方向。这项研究不仅为开发面部识别技术提供了理论的基础和实践指导,而且为促进AI技术在社会生活中的广泛应用铺平了道路。这些包括进一步优化算法以减少计算资源的消耗,开发更有效的数据增强技术以增强模型概括,并探索更广泛的应用程序场景,例如智能安全,个性化服务和可访问性辅助系统。