○ Introduction to Particle Flow ○ Insights into the Neural Network Design ○ Metrics Overview: Building Blocks for Evaluation ○ Dataset - Jet-like Particle Gun ○ Results - Energy and Angular Resolution ○ Results - Reconstructed Mass ○ Results - Efficiency and Fake Rates ○ Results - Particle Identification 3.摘要和下一步
我相信,在个人学习方面,人工智能作为传统教育方法的补充具有巨大潜力。然而,除了潜力之外,人工智能的快速发展还引发了许多道德问题,这些问题往往解决得太晚,而且程度有限。
- 培训语言模型以人为反馈的指示 - 直接偏好优化:您的语言模型是秘密的奖励模型 - 精细的人类反馈为语言模型培训提供了更好的奖励 - 开放问题和从人类反馈>的强化基本限制
24种类型的偏头痛类型诊断(偏头痛的典型光环,不含光环的偏头痛,不含偏头痛的典型光环,家族性偏瘫偏头痛,零星偏瘫偏头痛,基底型Aura,其他)
征文:教育和教育研究中的人工智能国际研讨会 (AIEER) AIEER 2024 教育和教育研究中的人工智能国际研讨会是第 27 届欧洲人工智能会议 ECAI 2024 [https://www.ecai2024.eu/] 的一部分。本次研讨会定于 2024 年 10 月 19 日至 20 日星期六和星期日举行。 研讨会范围 本次研讨会有两个不同的重点,旨在更广泛地面向教育人工智能领域。 第 1 部分。由社会科学主导的讨论,讨论人工智能应用可能有助于解决的教育中的实际问题。这包括教育和教学人工智能的研究,也包括社会科学、经济学和人文学科,包括所有学科,如教育和教学实际行动、以教育需求为重点的劳动力市场研究、教育史和相关教育文化遗产,以及决策和行为科学观点的信息预测。一方面,我们关注人工智能、教育和社会之间的联系。这包括定量和定性研究、分析教育和劳动力市场数据的数据科学方法、推荐系统的人工智能方法以及数字化学习。另一方面,我们关注如何使用人工智能来突破该领域的界限。这包括开发新方法(包括使用人工智能的方法)、寻找和提供可访问的新数据源、丰富数据等等。在这两种情况下,不同观点之间的沟通和相互理解至关重要,这也是本次研讨会的目标之一。更广泛地说,我们感兴趣的是人工智能方法如何影响教育的所有领域以及企业和劳动力市场。这包括从小学到高等教育的所有教育部门如何受到人工智能方法的影响和对其作出反应的方法。用人工智能方法设计数字化未来为教育提出了几个问题:在最广泛的层面上,立法和规范问题;在公司层面,关于投资决策以及如何保持生产力和劳动力的问题;在个人层面,关于资格以及哪些技能需要应用和可能重新学习的问题。因此,技能和资格是教育和教育研究中人工智能的核心。第 2 部分。关于可以开发哪些人工智能应用程序(以及如何开发)来解决第 1 部分提出的问题的(计算机科学主导)讨论。使用基于人工智能的系统来支持教学或学习已经发展了 40 多年,但近年来,由于 COVID-19 大流行期间电子学习工具的使用增加以及最近生成人工智能的爆炸式增长,其增长显着增加。我们正处于这一领域发展的关键时刻,人工智能专家和教育专家必须携手合作,以在教学过程中最佳地利用这项技术。本次研讨会旨在为展示新提案和反思这一具有如此社会意义的领域的最新技术创造空间。在第一部分中,我们特别关注人工智能的技术方面,重点关注用于内容创建(生成式人工智能)、学生分析(机器学习)、学习分析或教师可解释的人工智能方法的具体技术
4 md.devendran@gmail.com摘要:鸟类鉴定在生物多样性保护和生态学研究中起着至关重要的作用,为栖息地健康和物种分布提供了见解。识别鸟类物种的传统方法是时间密集型,容易出现人为错误,因此需要自动解决方案。这个项目是使用深度学习的鸟类识别,提出了一个先进的系统,以利用深度学习的力量准确地从图像中识别鸟类。该系统利用卷积神经网络(CNN),以其在图像分类任务方面的熟练程度而闻名。一个包含多种鸟类图像的数据集进行了预处理并增强,以增强模型的鲁棒性和泛化。模型架构旨在提取复杂的特征,即使在诸如不同的照明条件,遮挡或类似物种的外观等挑战性的情况下,也可以准确识别。使用准确性,精度,召回和F1得分等指标评估模型的性能,以确保全面验证。结果表明,对传统机器学习方法的准确性改善了,这表明了物种识别中深度学习的潜力。该项目对野生动植物监测,生态研究和教育工具的应用有望,从而促进了意识和保护工作。未来的工作可能包括将系统集成到移动应用中,或将其部署在现场条件下的实时鸟类识别。
本文比较了不同的船舶性能建模方法,目的是找到最适合运营优化的建模技术。特别强调了机器学习等数据驱动方法的潜力和挑战。与中午报告相比,使用基于传感器数据的数据驱动方法的附加值是量化的。除了行业标准方法之外,还提出了一种基于物理信息机器学习的新方法,称为“船舶内核”。船舶内核在短期准确性方面优于此处考虑的其他方法。这使它们成为需要对广泛条件进行预测的运营优化(例如路线和速度优化)的理想构建块。与其他方法相比,船舶内核具有出色的长期准确性,使其成为性能监控用例(例如与船体和螺旋桨性能相关的维护计划)的宝贵工具。本文最后对机器学习操作化面临的挑战进行了总体评论和警告。
摘要 人工智能 (AI) 是一门科学,它涉及开发模仿人类智能的机器。机器学习 (ML) 是人工智能的一个子域,其中机器可以自动从数据中学习,而无需明确编程。农业不断受到压力,以用更少的资源生产更多。AI 和 ML 技术能够通过分析农业数据来优化资源利用率。它通过预测各种输入参数和预测作物的收获后寿命改变了当今农业的面貌。本章讨论了可用的不同 AI 和 ML 技术以及它们如何在农业生命周期的不同阶段使用。本章涵盖了农业中需要 AI 和 ML 的广泛领域。它包括土壤、灌溉和疾病管理。本章还介绍了人工智能在植物表型组学领域的重要性。本章讨论了地理信息系统 (GIS) 和遥感与人工智能相结合的可能用途。
编辑委员会博士Mustafa Necmiİlhan博士 - 加兹大学 - Özlemçakir博士 - DokuzEylül大学协会。MehmetMerveÖzaydın-AnkaraHacıBayramVeli University Assoc。
多次无误攻击是饱和和克服导弹防御系统的最简单方法之一。为了提高针对此类攻击者群体的拦截效率,有必要根据其运动学局限性分配拦截器。此外,这样的分配方案必须是可扩展的,以应对大型方案并允许动态重新分配。在本文中,我们首先提出了这种武器目标分配(WTA)问题的新表述,并提供了使用加固学习(RL)以及贪婪的搜索算法来解决它的分散方法。从每个追随者与所有目标的角度考虑参与。同时,其他拦截器与目标群体相关,而其他团队成员则可以使用其分配和成功概率。为了改善中途轨迹的塑造,在追随者和进来的对手之间放置了静态虚拟目标。每个拦截器根据从计算有效的仿真环境中的大量场景中学到的策略动态选择目标。RL输入状态包含目标的拦截器达到性覆盖范围以及其他导弹成功的概率。RL奖励汇总了团队绩效,以鼓励在分配层面上进行合作。相关的可及性约束是通过采用拦截器运动的运动学近似来分析获得的。RL的使用确保所有拦截器的实时可扩展和动态重新分配。我们将基于RL的分散WTA和指导方案与贪婪解决方案的性能进行比较,显示了RL的性能优势。