4 md.devendran@gmail.com摘要:鸟类鉴定在生物多样性保护和生态学研究中起着至关重要的作用,为栖息地健康和物种分布提供了见解。识别鸟类物种的传统方法是时间密集型,容易出现人为错误,因此需要自动解决方案。这个项目是使用深度学习的鸟类识别,提出了一个先进的系统,以利用深度学习的力量准确地从图像中识别鸟类。该系统利用卷积神经网络(CNN),以其在图像分类任务方面的熟练程度而闻名。一个包含多种鸟类图像的数据集进行了预处理并增强,以增强模型的鲁棒性和泛化。模型架构旨在提取复杂的特征,即使在诸如不同的照明条件,遮挡或类似物种的外观等挑战性的情况下,也可以准确识别。使用准确性,精度,召回和F1得分等指标评估模型的性能,以确保全面验证。结果表明,对传统机器学习方法的准确性改善了,这表明了物种识别中深度学习的潜力。该项目对野生动植物监测,生态研究和教育工具的应用有望,从而促进了意识和保护工作。未来的工作可能包括将系统集成到移动应用中,或将其部署在现场条件下的实时鸟类识别。
上个世纪提供了有关认知和学习的大量重要数据。然而,随着发展心理学的认知革命和发育心理学中Piage理论的兴起,强大的人从学习转变为思考。因此,我们现在对不同年龄的孩子的思维有很多了解,但是我们对他们的学习方式一无所知。远离研究儿童学习的动作反映了更多的三角形兴趣转变;它还反映了一个假设,即发展和学习在根本上是不同的。但是,学习和认知是同一枚硬币的两个方面。人们所知道的很大程度上是基于一个人学到的知识,当然是将军知识。因此,任何关于孩子如何学习的发展理论都是一个严重限制的发展。
然而,一个限制是,AI系统需要大量高质量数据来最大限度地减少其结果的偏差。在外科领域实施AI的其他担忧是在数据处理和分析时存在保密风险和患者信息完整性丧失的风险。对此,世界卫生组织明确了其在医学领域使用AI的道德立场。他们强调根据正义、仁慈、患者自主和非恶意原则实施AI使用的重要性。关于在医学中使用AI的法律框架,世界上最先进的卫生系统已经出台了新的法规。然而,这一领域在不久的将来仍将不断发展(1,6)。近年来,AR和虚拟现实(VR)在改善外科领域的教学过程方面发挥了重要作用。这些日益普及的技术进步使医学生、住院医生和研究员能够沉浸在模拟和控制的场景中,从而获得培训过程中所需的手术技能和能力。AR 和 VR 的优势包括缩短学习曲线时间、通过不将真实患者暴露于学习目的来减少可能的手术并发症以及使用先前建立和验证过的课程 (8)。同样,
摘要 人工智能 (AI) 是一门科学,它涉及开发模仿人类智能的机器。机器学习 (ML) 是人工智能的一个子域,其中机器可以自动从数据中学习,而无需明确编程。农业不断受到压力,以用更少的资源生产更多。AI 和 ML 技术能够通过分析农业数据来优化资源利用率。它通过预测各种输入参数和预测作物的收获后寿命改变了当今农业的面貌。本章讨论了可用的不同 AI 和 ML 技术以及它们如何在农业生命周期的不同阶段使用。本章涵盖了农业中需要 AI 和 ML 的广泛领域。它包括土壤、灌溉和疾病管理。本章还介绍了人工智能在植物表型组学领域的重要性。本章讨论了地理信息系统 (GIS) 和遥感与人工智能相结合的可能用途。
随着手机摄像头的质量开始在现代智能手机中发挥关键作用,人们越来越关注用于改善手机照片各个感知方面的 ISP 算法。在这次移动 AI 挑战赛中,目标是开发一个基于深度学习的端到端图像信号处理 (ISP) 管道,该管道可以取代传统的手工制作的 ISP,并在智能手机 NPU 上实现近乎实时的性能。为此,参赛者获得了一个新颖的学习到的 ISP 数据集,其中包含使用索尼 IMX586 Quad Bayer 移动传感器和专业的 102 兆像素中画幅相机拍摄的 RAW-RGB 图像对。所有模型的运行时间都在联发科 Dimensity 1000+ 平台上进行评估,该平台配备专用的 AI 处理单元,能够加速浮点和量化神经网络。所提出的解决方案与上述 NPU 完全兼容,能够在 60-100 毫秒内处理全高清照片,同时实现高保真效果。本文提供了本次挑战赛中开发的所有模型的详细描述。
大规模的基础设施系统对社会欢迎至关重要,其有效管理需要造成各种复杂性的战略前提和干预方法。我们的研究解决了涉及下水道资产的预后和健康管理(PHM)框架内的两个挑战:对跨严重水平的管道降解并制定有效的维护政策。我们采用多州降解模型(MSDM)来代表下水道管道中的随机降解过程,并使用深度加固学习(DRL)来制定维护策略。荷兰下水道网络的案例研究例证了我们的方法论。我们的发现证明了该模型在产生超过启发式方法的智能,节省成本的维护策略方面的效率。它根据管道的年龄来调整其管理策略,选择一种被动方法,用于新的管道,并过渡到较老的策略,以防止失败和降低成本。这项研究高光DRL在优化维护政策方面的潜力。未来的研究将通过合并部分可观察性,探索各种强化学习算法并将这种方法扩展到全面的基础架构管理,以改善模型。
1. 首先将双手举起,摆动手指,并用嘴巴发出柔和的呼呼声 2. 反复搓手掌 3. 打响指 4. 拍大腿,左右交替 5. 拍手或跺脚 6. 大声拍手 7. 然后反转……直到回到摆动手指和柔和呼呼的声音! 8. 你刚刚制造了一场暴风雨!
课程描述和目标:本课程提供了机器人技术中的设计和编程感知系统的介绍。该课程涵盖了使用视觉和3D深度传感器的导航领域的主题,本地化和地图制作,视觉导航和识别的基本图像处理,视觉和基于深度的掌握和操纵以及基于深度学习的感知处理技术中的前沿主题。您将开发算法,并学习如何使用当前的最新视觉和软件工具,例如OpenCV,MoveIt和Point Cloud库。该软件组件可以在机器人操作系统(ROS)下开发。该课程将在对象识别,姿势检测,视觉导航以及视觉和推理的应用空间中使用感知大约进行四到五个项目。该软件将首先在模拟中开发,然后在平台上对其进行测试,在该平台上,学生将以三个或四个组为组。该课程是一个面对面的动手学习 +发展课程,我们希望学生参加课内会议。
多次无误攻击是饱和和克服导弹防御系统的最简单方法之一。为了提高针对此类攻击者群体的拦截效率,有必要根据其运动学局限性分配拦截器。此外,这样的分配方案必须是可扩展的,以应对大型方案并允许动态重新分配。在本文中,我们首先提出了这种武器目标分配(WTA)问题的新表述,并提供了使用加固学习(RL)以及贪婪的搜索算法来解决它的分散方法。从每个追随者与所有目标的角度考虑参与。同时,其他拦截器与目标群体相关,而其他团队成员则可以使用其分配和成功概率。为了改善中途轨迹的塑造,在追随者和进来的对手之间放置了静态虚拟目标。每个拦截器根据从计算有效的仿真环境中的大量场景中学到的策略动态选择目标。RL输入状态包含目标的拦截器达到性覆盖范围以及其他导弹成功的概率。RL奖励汇总了团队绩效,以鼓励在分配层面上进行合作。相关的可及性约束是通过采用拦截器运动的运动学近似来分析获得的。RL的使用确保所有拦截器的实时可扩展和动态重新分配。我们将基于RL的分散WTA和指导方案与贪婪解决方案的性能进行比较,显示了RL的性能优势。
印度摘要:在数字世界的当代景观中,行业依赖人工智能技术,从根本上讲,这在根本上取决于机器学习的概念。机器学习是利用大量数据的字段,然后将这些数据馈送到称为模型的结构中。此数据“训练”该模型。丰富的数据用于训练这些模型,以使该数据具有最佳状态。但是,对这些丰富数据的依赖使我们面临着对用户隐私的重大风险,这是一个问题。它直接挑战了“被遗忘的权利”的存在。模型与训练数据的数据之间存在复杂的关系。传统数据管理系统可以轻松从数据库中删除用户信息,但是与机器学习模型相比,该方案变得非常复杂。这产生了称为机器学习的全新概念。该项目通过开发一种独立的工具和API来解决这一挑战,专门设计,以促进通过机器学习模型忘记数据。我们的目标是在机器学习技术的背景下开创一种增强用户隐私的实用方法。通过创建一个高效可靠的解决方案,我们旨在弥合数据隐私权利与机器学习模型的复杂工作之间的差距。通过这项努力,我们为数字时代的隐私,数据安全和道德AI实践的不断发展的论述做出了贡献。