糖基化在包括糖尿病在内的蛋白质功能和疾病进展中起着至关重要的作用。这项研究进行了全面的糖蛋白分析,比较了健康的志愿者(HV)和DM样品,并鉴定出19,374肽和2,113种蛋白质,其中11104种是糖基化的。总共将287种不同的聚糖映射到3,722个糖基化的肽,揭示了HV和DM样品之间糖基化模式的显着差异。统计分析确定了29个显着改变糖基化位点,在DM中上调了23个,在DM中下调了6个。值得注意的是,在DM中,在Prosaposin的位置215处的Glycan HexNAC(2)Hex(2)FUC(1)在DM中显着上调,标志着其首次报道的与糖尿病的关联。机器学习模型,尤其是支持向量机(SVM)和广义线性模型(GLM),在基于糖基化特征(Glycans,糖基化蛋白质和糖基化位点)区分HV和DM样品时,可以在区分HV和DM样品时获得高分类精度(〜92%:96%)。这些发现表明,改变的糖基化模式可能是糖尿病相关病理生理和治疗靶向的潜在生物标志物。
1 纺织工程精梳、粗纱准备和环锭纺纱原理。 R Chattopadhyay 12 周 https://online.vtu.ac.in/course-details/principles-of-combin 3 2 纺织工程纱线制造 I:开松、梳理原理 R Chattopadhyay 教授 12 周 https://online.vtu.ac.in/course-details/yarn-manufacture 3 3 纺织工程技术纺织品 Apurba Das 教授 12 周 https://online.vtu.ac.in/course-details/Technical-Textiles 3 4 纺织工程 服装舒适科学 教授 Apurba Das 12 周 https://online.vtu.ac.in/course-details/science-of-clothin 3 5 纺织工程 纺织整理 Kushal Sen 教授 12 周https://online.vtu.ac.in/course-details/textile-finishing 3 6 纺织工程纬编和经编科学与技术 Bipin Kumar 教授 12 周 https://online.vtu.ac.in/course-details/science-and-tech 3
v3.8 基准数据集:HG002 30x WGS,除 SEQC2 上的 Mutect2 50x WGS CPU:m5.24xlarge;GPU:8xA100,除 8xV100 上的 DeepVariant 和 Mutect2
摘要 在当今的数字时代,大众媒体在协助政府战胜 COVID-19 大流行方面发挥着至关重要的作用。该职位的职责包括传播有关 COVID-19 大流行的政府政策的呼吁、建议、新闻和社会化工作的信息。本研究的目的是通过在印度尼西亚北苏门答腊省的报纸 Harian Waspada 上传播大规模疫苗照片新闻来研究 COVID-19 缓解工作的优化。采用符号学方法对描绘大规模疫苗接种的照片进行分析,以检查图像中嵌入的外延、内涵和神话含义。采用访谈法收集与 Harian Waspada 有关的摄影师和编辑的见解,他们积极参与大规模疫苗相关新闻的报道。本研究的结果表明,Harian Waspada 除了致力于通过照片新闻向更广泛的社区传播知识外,在新闻文章中加入大规模免疫照片也是吸引读者的元素。 《Harian Waspada》中加入了人文照片,描绘了大规模疫苗接种工作,旨在唤起人们的惊奇、怜悯、喜悦或绝望等情感。关键词:COVID-19;《Harian Waspada》;新闻报道;图片新闻;符号学分析
摘要 - RSNA-MICCAI 脑肿瘤放射基因组学分类挑战赛[1]旨在通过对多参数 mpMRI 扫描(T1w、T1wCE、T2w 和 FLAIR)进行二元分类来预测胶质母细胞瘤中的 MGMT 生物标志物[2]状态。数据集分为三个主要队列:训练集、验证集(在训练期间使用),测试集仅在最终评估中使用。图像要么是 DICOM 格式[3],要么是 png 格式[4]。使用不同的架构来研究该问题,包括 3D 版本的 Vision Transformer (ViT3D)[5]、ResNet50[6]、Xception[7] 和 EfficientNet-b3[8]。AUC 被用作主要评估指标,结果显示 ViT3D 和 Xception 模型都具有优势,在测试集上分别达到 0.6015 和 0.61745。与其他结果相比,考虑到任务的复杂性,我们的结果被证明是有效的。通过探索不同的策略、不同的架构和更多样化的数据集可以取得进一步的改进。
方法:用于对ONFH患者和健康对照组中的mRNA表达训练进行仔细检查,其数据整合来自GEO数据库。de mRNA。通过基因和基因组(KEGG)途径富集分析,基因本体论(GO)功能分析以及基因集富集分析(GSEA)的基因和基因组(KEGG)途径富集分析,基因和基因组百科全书(GSEA)探索了DE mRNA的生物学功能。此外,支持向量机 - 递归特征消除(SVM-RFE)和最低绝对收缩和选择操作员(Lasso)(Lasso)被用来辨别与该疾病相关的诊断生物标志物。接收器操作特征(ROC)分析用于评估特征基因的统计性能。使用QRT-PCR在从ONFH患者和健康对照组中获得的骨组织中进行关键基因的验证。成骨分化,以验证关键基因与成骨分化之间的相关性。最后,执行免疫细胞进行锻炼分析以评估ONFH中的免疫细胞失调,同时探索免疫细胞内效率与关键基因之间的相关性。
表位保护估计为87.6% - 96.5%,在膜(M)中为92.5% - 99.6%,Nucleocapsid(N)为94.6% - 99%。随着病毒的突变,越来越多的s表位降低了预测的结合功能:70%的Omicron BQ.1-XBB.1-XBB.1-XBB.1.5 S的表位经历了预测的结合降低,相比之下,早期的STRAINS DELTA AY.100 - AY.100 - AY.44和OMICICRON。Additionally, we identi fi ed several novel candidate HLA alleles that may be more susceptible to severe disease, notably HLA-A*32:01 , HLA-A*26:01 , and HLA-B*53:01 , and relatively protected from disease, such as HLA-A*31:01 , HLA- B*40:01 , HLA-B*44:03 , and HLA-B*57:01。我们的发现支持以下假设:影响CD8 T细胞表位免疫原性的病毒遗传变异有助于确定急性Covid-19的临床严重程度。实现长期COVID-19免疫将需要了解T细胞,SARS-COV-2变体和宿主MHC I类遗传学之间的关系。该项目是探索SARS-COV-2 CD8 +表位多样性的第一个项目之一,它对美国大部分人口进行了影响。
Artem Shmatko 1,3,*,Patel 1:4,5,6,*,Ramin Rahmanzade 4.5,红色4.5,Luke Friedrich Schrimmpf 4.5.7,Big 4.5,Henri Bogumil 4.5,Sybren L.N.5月8日,马丁·西尔·詹妮克(Martin Sill Jannik)11,13,大卫·鲁斯(David Reuss),克里斯蒂安·埃罗德·孟德(Christian Herold-Mende)9,技能M琼斯6:14,Stefan M. Pfister,Arnault Esparia-Sack 31,32,Pascal Varlet 31,32,Brandner 33,Xiangzhi Bai 2,Andreas von Deimling 4.5,
iMeta 期刊 ( 影响因子 23.8 ) 由宏科学、千名华人科学家和威立出版,主编刘双江和傅静远教授。目标为生物 医学国际综合顶刊群 ( 对标 Nature/Cell) ,任何领域高影响力的研究、方法和综述均欢迎投稿,重点关注生物 技术、生信和微生物组等前沿交叉学科,已被 SCIE 、 PubMed 等收录,位列全球 SCI 期刊前千分之五,微生 物学研究类期刊全球第一;外审平均 21 天,投稿至发表中位数 57 天。 子刊 iMetaOmics ( 主编赵方庆和于君教授 ) 、 iMetaMed 定位 IF>10 的综合、医学期刊,欢迎投稿!