近 年 来 , 预 训 练 语 言 模 型 已 逐 渐 成 为 自 然 语 言 处 理 领 域 的 基 座 模 型 。 相 关 实 验 现 象 表 明 , 预 训 练 语 言 模 型 能 够 自 发 地 从 预 训 练 语 料 中 学 到 一 定 的 语 言 学 知 识 、 世 界 知 识 和 常 识 知 识 , 从 而 在 知 识 密 集 型 任 务 上 获 得 出 色 的 表 现 ( AlKhamissi et al., 2022 ; Safavi and Koutra, 2021 ; Petroni et al., 2019 ) 。 然 而 , 预 训 练 语 言 模 型 中 的 知 识 隐 式 地 存 储 在 参 数 之中 , 难 以 显 式 地 对 预 训 练 语 言 模 型 中 的 知 识 进 行 分 析 和 利 用 。 同 时 , 预 训 练 语 言 模 型在 知 识 和 推 理 上 的 表 现 并 不 可 靠 , 常常 会 出 现 “ 幻 觉 ” 现 象 ( Ji et al., 2022 ) , 给 出 与 知 识 冲 突 的 预 测 结 果 。 这 些 因 素 阻 碍 了 预 训 练 语 言 模 型 提 供 可 靠 的 知 识 服 务 。 因 此 , 探 究 模 型 掌握 知 识 的 机 理 、 研 究 如 何 提 取 和 补 充 语 言 模 型 中 的 知 识 成 为 近 期 的 研 究 热点 。 本 次 讲 习 班 主 要 内 容 包 括 预 训 练 语 言 模 型 中 的 知 识 分 析 、 预 训 练 语 言 模 型 的 知 识 萃 取 、 知 识 增 强 的 预 训 练 语 言 模 型 三个 部 分 , 听 众 将 在 本 次 讲 习 班 中了 解 到 近 期 研 究 中 对 预 训 练 语 言 模 型 掌握 知 识 情 况 的 认识 、 从 预 训 练 语 言 模 型 中 提 取 符 号 知 识 的 实 现 方 案 、 利 用 外 部 知 识 增 强 模 型 弥 补 缺 陷 的 各 类 方 法 。
简介:在过去的几十年中,碳纳米材料(例如碳纳米纤维(CNF)和石墨烯)由于其宏伟的特性而引起了强烈的科学兴趣[1,2]。关于石墨烯的大部分研究都是针对合成高质量和大面积石墨烯方法的探索。有希望的方法是脉搏激光沉积和化学蒸气沉积。虽然在理解石墨烯合成方面已经取得了重要成就,但它们的形成机制尚不清楚。现场技术的最新进展现在为研究原子水平研究固相相互作用的新可能性提供了新的可能性。在这里,我们报告了通过原位透射电子显微镜(TEM)直接观察到铜含有铜纳米纤维(CU-CNFS)的结构转化。实验:使用kaufmann型离子枪制造Cu-CNF(iontech。Inc. Ltd.,模型3-1500-100FC)。所使用的样品是尺寸为5x10x100 µm的市售石墨箔。通过在CNFS生长过程中连续供应Cu,在室温下用1 keV ar +离子辐射石墨箔的边缘。在其他地方详细描述了离子诱导的CNF生长机理的细节[3]。然后将Cu-CNF安装在200 kV的TEM(JEM2010,JEOL CO.,JEOL CO.)的阴极微探针上,并研究了Cu-CNFS向石墨烯的结构转化,在电流 - 电压(I-V)测量过程中进行了研究。结果和讨论:在I-V测量过程中,高温是通过Cu-CNF结构中的Joule加热获得的。焦耳CNF的加热导致其表面石墨化,最后在转化为严重扭曲的石墨烯中。tem图像表明,最初,CNF在本质上是无定形的,而I-V过程中的电流流动引起了CNF的晶体结构的急剧变化,形成了石墨烯的薄层(1-3层)。作为结果,在产生的电流大大增加的情况下,改进了结构的电性能,比初始值高1000倍(从10 -8到10 -5 a)。该过程采用三个步骤进行:Cu纳米颗粒的聚集,无定形碳扩散到Cu中,以及在进一步加热下的Cu纳米颗粒的电迁移。
选举部门负责监督加利福尼亚州内的所有联邦和州选举。在每次全州选举中,加利福尼亚州都会为 2000 多万登记选民准备 10 种语言的选民信息手册——英语、西班牙语、中文、印地语、日语、高棉语、韩语、他加禄语、泰语和越南语。作为美国最大州的首席选举官,加利福尼亚州务卿会测试和批准所有投票设备的安全性、准确性、可靠性和可访问性,以确保每张选票都按原样计算。州务卿还确保选举法和竞选披露要求得到执行,维护所有登记选民的全州数据库,认证选举候选人的正式名单,跟踪和认证投票倡议,汇编选举结果并认证选举结果,教育加利福尼亚州公民了解他们的投票权利,并促进选民登记和参与。
摘要:近年来,人工智能在将棋、黑白棋等具有完美信息的游戏中已经可以与顶级职业选手相媲美,但在具有不完美信息的游戏中却只取得了部分成功。例如,一些研究人员已经在扑克游戏中实现了与顶级职业选手相媲美的人工智能,但在麻将游戏中却未能实现,麻将是一种信息不完美且复杂度高于扑克的游戏。Mizukami 等人(2013, 2014) 构建了一个接近顶级职业麻将水平的人工智能。但是,这种人工智能无法夺取一张牌来为每个 Yaku 构建一个组合。另一方面,Harada 等人构建了麻将人工智能——全手牌提取(CHE),该人工智能考虑了高概率构建的役牌。基于此工作,我们将 CHE 应用于麻将人工智能,该人工智能可以认领一张牌,从而为每个役牌构建一个组合。在使用 CHE 的麻将游戏中,所提出的人工智能的有效性得到了证实。
上游各州认识到,要使系统保持平衡,需要所有流域州和用水部门的合作和努力。因此,我们随时准备参与和支持整个流域的努力,以解决持续的干旱水文和枯竭的储存条件。然而,上游各州保护关键水库高程的选项有限。上游流域自然受限于河流供应的减少,而之前的干旱应对行动正在消耗 661,000 英亩英尺的上游储存量。在当前条件下,我们的用水者已经遭受长期短缺,导致无补偿的优先管理,其中包括削减我们每个州的众多现有完善权利。