光伏领域。高级材料中的光捕获和限制的优化将被动辐射冷却的概念推向了白天被动辐射冷却,并在过去十年中取得了令人印象深刻的结果和进展。照片的进步 - NIC和光收集继续提高太阳能电池的效率和全球性能,从而加速了其全球部署。无碳能量的长期挑战一直在利用核融合与Hy-Drogen同位素。虽然提出了一种基于激光的方法并早在1960年代就进行了投资,但磁性融合限制此后就引起了大部分关注和资金。然而,国家点火设施在2022年实现了点火点,证明了惯性限制融合的相关性,促使行业 - 行业联盟的形成和雄心勃勃的计划的资金。尽管仍然存在Nuber的困难,但现在已经明确确定了目标:在本世纪中叶开发基于无碳的惯性限制电力发电厂。Photonics提供的有希望的视野来减轻气候危机并促进可持续技术 - 发展可以促进我们行业的转变。基于光的技术为寻求可持续经济的创新和相关的解决方案提供了实现碳中立性并建立光明的未来的方式。
1 Alexey Dosovitskiy、Lucas Beyer、Alexander Kolesnikov、Dirk Weissenborn、Xiaohua Zhai、Thomas Unterthiner、Mostafa Dehghani、Matthias Minderer、Georg Heigold、Sylvain Gelly、Jakob Uszkoreit、Neil Houlsby “一张图片胜过 16X16 个单词:用于大规模图像识别的 Transformers” arXiv:2010.11929v2 [cs.CV] 2021 年 6 月 3 日
在场地E上的海报会议简短介绍为1分钟,没有问答。海报主持人被要求提交一张摘要幻灯片并提前提交。简短的演示后,海报演示将在地点PS开始。12月8日9:00的海报设置,然后拆除至12月8日13:00。关于演示文稿编号:例如,7AA-1是指第七场地早晨的第一次演讲,在讲座编号前的△标记表示演示奖的演讲。
1人类遗传学系,麦吉尔大学,蒙特利尔,QC H3A 0C7,加拿大2个基因组医学中心,京都大学研究生院,京都大学606-8507,日本3数字技术研究中心,加拿大国家研究委员会,渥太华,渥太华,K1K 4P7,加拿大4P7,Indure prantublorator and Inderipic suplorator and Indiator lip lip lip lip lip lip。渥太华的渥太华,位于加拿大的K1H 8M5,5年生物化学系,微生物学和免疫学系和渥太华系统生物学研究所,渥太华大学,渥太华大学,K1H 8M5,加拿大6 Terrence Donnelly Donnelly Donnelly Center of Cancase ot toronto,MORONTO,MORONTO,MORONTO,MORONTO,MORONTO,MOLONTO,MOLONTO,MOLONTO,MOLONTO,MORENT,MORONT,MOLONT,MORONT,MOLONTO,MORONT,MORONTICT,M5S,M5S,M5S,M5S,M5 of Toronto, Toronto, ON M5S 3E1, Canada 8 Institute of Parasitology, McGill University, Montreal, QC H9X 3V9, Canada 9 Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, Ottawa, ON K1H 8M5, Canada 10 Department of Chemistry and Biomolecular Sciences, Centre for Catalysis Research and Innovation, University of Ottawa,渥太华,在加拿大的K1N 6N5上,相应的作者。数字技术研究中心,国家研究委员会,渥太华蒙特利尔路1200号,加拿大K1K 4P7。电子邮件:Miroslava.cuperlovic-culf@nrc-cnrc.gc.ca(M.C.-C。)和渥太华大学生物化学,微生物学和免疫学系,451 Smyth Rd,Ottawa,Ottawa,Ottawa,Ottawa,K1H 8M5,加拿大。 电子邮件:sbennet@uottawa.ca(S.A.L.B。) †同等贡献。 副编辑:guqiang yu电子邮件:Miroslava.cuperlovic-culf@nrc-cnrc.gc.ca(M.C.-C。)和渥太华大学生物化学,微生物学和免疫学系,451 Smyth Rd,Ottawa,Ottawa,Ottawa,Ottawa,K1H 8M5,加拿大。电子邮件:sbennet@uottawa.ca(S.A.L.B。) †同等贡献。 副编辑:guqiang yu电子邮件:sbennet@uottawa.ca(S.A.L.B。)†同等贡献。副编辑:guqiang yu
■公司简介 公司名称:系统规划研究所株式会社 代表董事:门胁仁志 总公司所在地:东京都涩谷区樱丘町18-6日本会馆 业务内容:以医疗信息、控制与空间、通信与网络、图像处理、AI等领域为中心的软件开发、系统开发、系统集成、咨询、技术开发、产品开发 URL:https://www.isp.co.jp/
(1) R. Gómez-Bombarelli, J.N.魏,D. Duvenaud,J.M.Hernandez-Lobato、B. Sanchez-Lengeling、D. Sheberla、J. Aguilera-Iparraguirre、T.D.希泽尔 R.P.亚当斯和 A.Aspuru-Guzik.,“使用数据驱动的分子连续表示进行自动化学设计”,ACS Central Science,卷。4,没有。2,第268-276,2018 年 2 月。(2) T.Guo, D.J.Lohan 和 J.T.Allisony,“使用变分自动编码器和风格迁移进行拓扑优化的间接设计表示”,AIAA 2018-0804。https://doi.org/10.2514 / 6.2018-0804,2018年。(3) S. Oh、Y. Jung、S. Kim、I. Lee 和 N. Kang,“深度生成设计:拓扑优化与生成模型的集成,”J.机械设计,卷。141,号。11, 111405, 2019.(4) 五十岚一,伊藤桂一,《人工知能(AI)技术と电磁気学を用いた最适设计[I]──トポロジー最适化──,》信学志,卷.105,没有。1. 页2022 年 33-38 日。(5) H. Sasaki 和 H. Igarashi,“深度学习加速拓扑优化”,IEEE Trans。Magn.,卷。55,没有。6,7401305,2019。(6) J. Asanuma、S. Doi 和 H. Igarashi,“通过深度学习进行迁移学习:应用于电动机拓扑优化, ” IEEE Trans.Magn., 卷。56, no.3, 7512404, 2020.(7 ) T. Aoyagi、Y. Otomo、H. Igarashi1、H. Sasaki、Y. Hidaka 和 H. Arita,“使用深度学习进行拓扑优化预测电流相关电机扭矩特性”,将在 COMPUMAG2021 上发表。(8) R.R.Selvaraju、M. Cogswell、A. Das、R. Vedantam、D. Parikh 和 D. Batra,“Grad-CAM:来自深层的视觉解释网络通过基于梯度的定位,” Proc.IEEE Int.Conf.计算机视觉 ( ICCV ),第< div> 618-626,2017 年。(9) H. Sasaki、Y. Hidaka 和 H. Igarashi,“用于电动机设计的可解释深度神经网络”,IEEE Trans。Magn.,卷57,号6,8203504,2021。(10) X.Y.Kou,G.T.Parks,和 S.T.< div> Tana,“功能优化设计