– Distinguished Overseas Scholars' Lecture Program, Peking University ( 北京大学海外名家讲 学计划 ), September, 2023 – Lecture Series, Gaoling Artificial Intelligence School, Renmin University, September, 2023 – Invited Talk at International Joint Conference on Theoretical Computer Science, August, 2020 – Invited Talk for China Computer Federation Inspiring New Ideas (CCF 啓智會 ) at Shanghai University of Finance and Economics, October, 2017 – 2015年6月,雷德蒙德的Microsoft Research邀请演讲 - 伯克利Econcs研讨会,2014年3月
您的物理主题Facebook页面‘Dr.Tong的共享'有24,000多名关注者。您是如何做到的?许多教育者正在使用社交媒体来促进科学,但我对我的老师身份特别不受限制。前一段时间,一家日本时装公司设计了一件T恤,该T恤使用光学幻觉网格,使胸部尺寸更大。根据爱因斯坦的一般相对论理论,我想到了时间空间扭曲的说明,所以我借此机会在Facebook上阐述了它,并收获了很多喜欢和评论。我已经为我的页面拍摄了有趣的视频,曾经有榴莲将脸上拍打的风险,以展示能量保护定律。我还利用了我的页面的受欢迎程度,以增强我部门的“电子学习微型模块”。该网站在一个星期内记录了将近20,000次访问。我想我有一种自然的才华,可以在正确的时间说正确的话来吸引注意力。
In addition to the general affairs office, which is responsible for the administrative department of forensics, Crime Forensics Office, there are a wide range of business fields, including the DNA center, fingerprint center, and document center, which are in charge of the current department, so it is a gathering of staff with a variety of backgrounds, including staff with highly specialized skills in each field, police officers and appraisers who are seconded to the prefectural police.您不仅可以谈论工作,而且还可以轻松地聊天而不与年龄或背景区分,所以我觉得这是一个非常容易的工作场所。
摘要 - 隐身是将秘密信息隐藏在其他媒体中的实践,例如图像,音频,视频和文本。在当今社会中,它变得越来越重要,作为实现私人和安全沟通的一种方式。该研究项目的重点是图像隐志技术,这些技术用于通过统计切解技术来逃避秘密信息的检测。这项研究的目的是比较和评估不同的图像隐志方法,研究其实施复杂性,并提出一个框架以改善当前方法。这项研究将比较不同的地理技术在避免通过stemansysis检测中的效率,并可能导致未来更好的隐身技术的发展。本文重点介绍了空间域中的三种密集志方法:最小显着的位(LSB),像素值差异(PVD)和基于边缘的数据嵌入(EBE)方法。使用这三种方法进行了一个简单的实验来对几个图像进行加密,并研究了使用均方误差(MSE)和峰值噪声比(PSNR)的LSB的失真度量。尽管在实验中认为LSB方法可以接受失真度量结果,但所有方法都会导致文件容量显着差异。这表明需要进一步增强加密的安全性,以便不会轻易发现秘密消息。因此,在本文中,我们在使用PVD加密之前,使用Morse Code,基础64,SHA-245和高级加密标准(AES)提出了一种概念化的增强。关键字 - 隐肌,切解分析,空间域,基于边缘的数据嵌入。
不受位置变化的影响。生物控制论,36(4),193-202。 https://doi.org/10.1007/BF 00344251 Goodfellow, I.、Bengio, Y. 和 Courville, A. (2016)。深度学习。麻省理工学院出版社。 (Schmidt、I. Schiffman、Y. Schaefer、A. 化学工程师和仪器仪表(2018)Graves、A.、Wayne、G. 和 Danihelka、I.(2014)。神经图灵机。 arXiv。 Ha, D. 和 Schmidhuber, J. (2018)。世界模特。 arXiv。 https://arxiv.org/abs/1803.10122 Han, K., Wang, Y., Chen, H., Chen, X., Guo, J., Liu, Z., Tang, Y., Xiao, A., Xu, C., Xu, Y., Yang, Z., Zhang, Y., & Tao, D. (2020 年)。关于视觉变压器的调查。 arXiv。 https://arxiv.org/abs/2012.12556 Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., 和 Lerchner, A. (2018)。迈向解开表征的定义。 arXiv。 https://archiv. org/abs/1812.02230 美国国立卫生研究院(AI)(2020 年)。 2020 年人工智能市场:5 年历史的人工智能创新和 5 年历史的临床试验 LeCun, Y., Bengio, Y., & Hinton, G. (2015 年)。深度学习。自然,521,436-444。 http://dx.doi.org/10.1038/nature 14539 Mansimov, E., Parisotto, E., Ba, JL 和 Salakhutdinov, R. (2015)。利用注意力机制根据标题生成图像。 arXiv。 https://archiv.org/abs/1511.02793 纽约(2015 年)。 我的一位朋友是角川家族的成员(2016年)(2016年)。 http://dx.doi.org/10.1037/0033-295X.101.1.13 McCulloch, WS 和 Pitts, W. (1943)。神经活动中蕴含的观念的逻辑演算。数学生物物理公报,5(4),115-133。 https://doi.org/10.1007/BF02478259 Nakkiran, P.、Kaplun, G.、Bansal, Y.、Yang, T.、Barak, B. 和 Sutskever, I. (2019)。深度双重下降:更大的模型和更多的数据会带来危害。 arXiv。 https://arxiv.org/abs/ 1912.02292 Perez, J.、Marinkovic, J. 和 Barcelo, P.(2019 年 5 月 6-9 日)。论现代神经网络架构的图灵完备性。 ICLR 2019:第七届学习表征国际会议。路易斯安那州新奥尔良。美国。 Radford , A.、Kim , JW、Hallacy , C.、Ramesh , A.、Goh , G.、Agarwal , S.、Sastry , G.、Askell , A.、Mishkin , P.、Clark , J.、Krueger , G. 和 Sutskever , I. (2021)。从自然语言监督中学习可转移的视觉模型。 arXiv。 https://arxiv.org/abs/2103.00020 Ramachandran, P., Zoph, B., 和 Le, QV (2017)。寻找激活函数。 arXiv。 https://arxiv.org/abs/ 1710.05941 Razavi, A., van the Word, A. 和 Vinyals, O. (2019)。使用 VQ-VAE-2 生成各种高保真图像arXiv。 https://arxiv.org/abs/1906.00446 Reed, S.、Akata, Z.、Yan, X.、Logeswaran, L.、Schiele, B. 和。