这项创新的核心是我们坚持不懈地致力于与客户密切合作。他们激励我们突破当今技术的极限,为未来提供突破性的解决方案。为了促进这种合作,我们在全球运营中战略性地在靠近客户制造基地的技术中心与客户互动。为了进一步扩大我们与客户成功合作的机会,并创造创新解决方案来应对他们面临的 CMP 挑战,CMC Materials 于 2022 年 7 月成为 Entegris 的一部分。此次交易进一步扩大了 Entegris 的研发足迹,并创建了一个更大的创新科学家和工程师社区,随时准备与客户互动并为他们服务。
理事会主席—— J OHN CROMPTON(曼彻斯特)副主席—— ERNEST T. HOLDSWORTH(布拉德福德) W. LAWRENCE BALLS(曼彻斯特) WILLIAM HOWARTH(博尔顿) ALDRED F. BARKER(利兹) JW KERSHAW(奥尔德姆)。FW BARWICK(曼彻斯特) JOSEPH H. LESTER(曼彻斯特) WILLIAM T. BOOTHMAN(博尔顿)。弗雷德里克·莱 (罗奇代尔) G. 克拉珀顿 (阿瑟顿、曼彻斯特) 弗兰克·纳斯密斯 (曼彻斯特) AW 克罗斯利 (曼彻斯特) 哈里·尼斯贝特 (曼彻斯特) JF 克罗利 (伦敦) J. 罗宾逊 (布拉德福德) HP 柯蒂斯 (曼彻斯特) EA 斯威夫特 (布拉德福德) W. 戴维斯 (诺丁汉) 卢克·索恩伯 (伯恩利) 亨利·P. 格雷格 (曼彻斯特) 约翰·F. 怀特 (布拉德福德) 奥斯卡·S. 霍尔 (伯里) RS 威洛斯 (曼彻斯特) W. 哈里森 (曼彻斯特) JC 威瑟斯 (曼彻斯特) RS 海沃德 (加拉希尔斯) T. 伍德豪斯 (邓迪) SH 希金斯 (邓巴顿)
注射后即使肺活量也可以忽略不计。血液清除术语表明,快速清除组件在休息时t 1/2的t清除,在运动条件下以1/2的静止为4.3分钟,在1.6分钟内清除。注射后五分钟,大约8%的注射剂量仍在循环中。在等离子体中,TC99M TC99M的蛋白质结合少于1%。心肌生物半衰期是休息或运动注射后大约六个小时。肝脏的生物半衰期是休息或运动注射后约30分钟。心脏的有效半衰期(包括生物半衰期和核素衰减)约为3小时,在休息或运动后,肝脏约为30分钟。理想的成像时间反映了心脏计数率和周围器官摄取之间的最佳折衷。
最简单的方法是人工智能通过自动测量或分类来支持放射学报告,尽管这种功能可能对横断面成像更有益。更常见的是,人工智能可用于对放射学报告工作列表进行优先排序或分类——所有被确定为包含异常发现的图像或显示特定病理的图像。2,3医院可以使用优先级来标记需要紧急报告的病例,以减轻报告积压带来的风险。这种优先级是否真的能更快地诊断出紧急或关键发现目前正在研究中,包括检查肺癌途径和诊断时间的工作。4然而,工作列表优先级可能会导致意想不到的不良后果,例如对于没有关键发现的患者来说,焦虑会增加,结果可能会更糟,因为他们需要等待更长的时间才能得到结果(例如,胸部X光检查正常的高风险肺癌患者需要等待更长时间才能得到正常报告,因此延迟了胸部 CT 转诊)。
摘要:隧道内部变形是由于上部结构附加荷载、超载、岩土体内部应力等因素引起的。隧道变形测量对于确定隧道塑性变形的大小具有重要意义,是隧道安全监测的重要环节。本研究采用有限元法分析了位于四层岩层中、受地下水影响、采用新奥隧道施工方法 (NATM) 逐步开挖的马蹄形或蛋形隧道的三维非线性行为。详细研究了随着开挖步骤的不同,拱顶和隧道周围受到不同载荷条件作用而发生的永久变形。此外,通过变形曲线对两种隧道几何形状下所有开挖阶段隧道关键段发生的永久变形进行了相对比较。已经确定,选择隧道几何形状为蛋形而不是马蹄形更有利于减少浅层和层状岩石环境中的下沉和收敛量。
在钢管混凝土 (CFST) 柱中,钢和混凝土以相互补充的方式放置,通过约束和侧向约束来提高刚度和强度。许多国家限制 CFST 柱(尤其是在地震多发地区)的应用,主要是因为 CFST 柱和结构钢梁之间的连接很复杂,而且缺乏了解(Beutel e/ a|..2002,Kang et al. 2001)。需要以这样的方式保持强度等级,即在地震作用下,在连接失效之前,最大限度地利用组件的延展性。由于任何高层建筑在地震期间的性能都由连接模式决定,因此最近对 CFST 的研究侧重于提高接头强度以避免连接失效的方法(Galambos 2000,Adanyet al. 2001)。钢梁与钢管混凝土柱之间的连接大致可分为外连接和内连接两大类。外连接包括
摘要。结果表明,创建节约资源的系统变体以发展长柱式开采是改进广宁煤矿矿井开采技术方案的主要方向之一。它们可以减少柱间柱中的煤炭损失,并降低维护用锚固固定的初步工作面的成本。当煤层上方是致密的岩石,容易在已开发的空间中出现显著的悬空时,这些方向的实施很困难(在某些情况下实际上是不可能的)。在广宁盆地,9-10% 的工作面被锚固,煤炭的运营损失达到 30% 或更多;每年有高达 50% 的工作面需要重新锚固。结论是,在实施圣彼得堡矿业大学提出的在再利用工作面与已开发空间之间留设加宽煤柱,并在对再利用工作面进行复垦的同时,继续沿回采工作面的同一方向进行煤柱开拓的设想,为减少煤炭损失、有效利用锚杆支护作为可再利用工作面主要支护创造了现实条件。关键词:开采开拓体系;煤柱;锚杆支护;致密岩层;煤炭损失
网络 网络是将 ALCF 的所有计算系统连接在一起的结构。InfiniBand 支持系统 I/O 节点和 ALCF 的各种存储系统之间的通信。生产 HPC SAN 建立在 NVIDIA Mellanox 高数据速率 (HDR) InfiniBand 硬件之上。两台 800 端口核心交换机在 80 台边缘交换机之间提供主干链路,在无阻塞胖树拓扑中产生总共 1600 个可用主机端口,每个端口的速率为 200 Gbps。此结构的完整二分带宽为 320 Tbps。HPC SAN 由 NVIDIA Mellanox 统一结构管理器 (UFM) 维护,提供自适应路由以避免拥塞,以及 NVIDIA Mellanox 智能数据中心自修复互连增强 (SHIELD) 弹性系统,用于链路故障检测和恢复。
摘要 — 数据整理任务(例如从各种来源获取和链接数据、转换数据格式以及更正错误记录)可占典型数据工程工作的 80%。尽管机器学习和人工智能兴起,但数据整理仍然是一项繁琐且手动的任务。我们引入了 AI 助手,这是一类半自动交互式工具,旨在简化数据整理。AI 助手通过推荐合适的数据转换来指导分析师完成特定的数据整理任务,该转换尊重通过与分析师交互获得的约束。我们正式定义了 AI 助手的结构,并描述了将数据清理视为优化问题的现有工具如何符合该定义。我们为四种常见的数据整理任务实现了 AI 助手,并利用它们遵循的通用结构,使数据分析师可以在数据科学的开源笔记本环境中轻松访问 AI 助手。我们通过三个示例场景对我们的 AI 助手进行了定量和定性评估。我们表明,统一和交互式的设计使得执行手动或全自动工具难以完成的任务变得容易。