建筑信息模型 (BIM) 已成为建筑行业的国际趋势。它涉及使用数字工具来支持规划、施工和运营的各个方面。BIM 方法将用于在港口基础设施的整个生命周期内将所有相关数据汇编成数字资产孪生,并将这些单独的孪生整合成一个总体数字港口孪生。除其他外,这将优化维护和更换投资的规划,并通过基于传感器数据的预测性维护提高系统和设备的可用性,从而降低规划和维护的成本和资源需求。
摘要。纤维增强聚合物(FRP)的优化对于工程可持续的未来至关重要。本评论论文探讨了数字双胞胎(DTS)在增强合成和可持续性FRP的特征,性能和可持续性方面的潜力。dts为实时监控和预测分析提供了虚拟空间,并彻底改变了FRP生产的传统局限性。最近的案例研究,例如Fastigue项目和纤维增强热塑性塑料的进步,展示了DT在解决生产过程中解决问题方面的强大作用。本文还讨论了开发可持续的“绿色”复合材料的独特挑战,这些复合材料与可持续发展目标之间的生物降解能力之间取得了平衡。它突出了利用DTS仔细检查合成和天然FRP的制造过程的好处。现代DTS已经证明了优化这些材料的固化动力学和机械性能的能力。此外,诸如3D打印的连续碳纤维复合材料,过高的纤维增强热塑性塑料以及基于可回收的Elium®的复合材料等案例研究鉴定了DTS在增强FRP的可持续生产方面的能力。承认未来的挑战,建议将生产和可持续性指标整合到现代多层DT系统中,以实现整体利益。关键字:数字双胞胎,复合材料,纤维增强聚合物
TiAl金属间化合物可通过形变诱导相变显著提高材料性能,但对TiAl金属间化合物塑性变形机制尚缺乏足够的认识。本文以双晶结构TiAl合金中的γ − TiAl和α 2 − Ti 3 Al为对象,在纳米尺度上研究了TiAl金属间化合物的位错滑移和孪生变形机制。利用应用扫描电子显微镜(SEM)和电子背散射衍射对变形内部组织进行表征和分析,采用Schmidt因子µ分析技术计算滑移能垒,研究了临界剪应力下γ − TiAl和α 2 − Ti 3 Al相的孪生变形机制以及γ − TiAl和α 2 − Ti 3 Al相的位错滑移动力学。两种双晶结构 γ − TiAl 和 α 2 − Ti 3 Al 的 TiAl 金属间化合物所需的临界剪应力分别为 92 和 108 MPa,孪生萌生时锥形 < a > 和基底 < a > 滑移所需的临界剪应力次之。孪生萌生时锥形 < c + a > 滑移所需的临界剪应力最高,且两者在数值上相等
晶粒尺寸是确定性的微观结构特征,可以使六角形封闭式(HCP)金属中变形的作用。尽管变形孪生是改善结构合金强度 - 降解性权衡的最有效机制之一,但随着晶粒尺寸的减少,其激活降低。这项工作报告了通过引入延性延展性的以身体为中心的立方体(BCC)纳米层接口的细粒度HCP微结构中变形孪生激活的发现。利用基于激光的添加剂制造的快速凝固和冷却条件,以获得精细的微观结构,并与强化的内在热处理结合使用,允许生成BCC纳米层。原位高能同步加速器X射线衍射允许实时跟踪机械孪生的激活和演变。获得的发现显示了延性纳米层的潜力,用于具有改善寿命跨度的HCP损伤耐受材料的新设计。
摘要 由于计算资源成本下降和数据采集潜力不断增加,人们对数字孪生(物理原件的虚拟副本)及其工业应用的兴趣日益增加。然而,关于如何支持物理到虚拟孪生过程及其关键方面,已发表的研究有限。本研究的目的是介绍从机电一体化产品开发建模项目中获得的有关物理到虚拟孪生的见解。我们对建模项目成员进行了调查和深入访谈。在调查和访谈中,我们确定了物理产品和虚拟模型是如何关联的,使用了哪些虚拟模型,以及项目成员认为哪些一般挑战和关键方面很重要。我们的研究结果表明,对物理到虚拟孪生建模构成挑战的关键特征是模型粒度、模型验证以及模型集成和互连性。关键词:数字孪生、产品建模/模型、模拟、设计过程 联系人:Sturm,Carolin 卡尔斯鲁厄理工学院 (KIT) IPEK 产品工程研究所 德国 carolin.sturm@kit.edu
尽管大多数物理实验都是用独立粒子进行的,但纠缠粒子的集体性质揭示了量子世界最迷人和最意想不到的方面。埃尔温·薛定谔首先指出“纠缠不是量子力学的一种特性,而是量子力学的特征”。纠缠态粒子对行为的一个奇特之处在于,尽管每个单独的粒子都表现出固有的不确定性,但纠缠对的联合实体却不会表现出这种不确定性。例如,虽然单个粒子到达的时间可能完全随机,但纠缠对必须始终同时到达。此属性为进行绝对测量提供了独特的工具。我们的目标是探索纠缠的无数含义和重要性,并利用它来开发一种新型光学测量——量子光学计量学。自发参量起源的非线性过程中产生的孪生光子之间存在独特的非经典关联。这种孪生量子之间的非经典联系不会因孪生量子之间任意大的分离而减弱,即使它们位于光锥之外。过去二十年来,孪生态已被用于进行确定性的量子实验,并产生了违反直觉的结果,这些实验包括由爱因斯坦-波多尔斯基-罗森 (EPR) 悖论引起的实验,例如贝尔不等式的各种测试 [1-12],以及非局部色散抵消、纠缠光子诱导透明性和单色光纠缠光子光谱。这些孪生光束的出现使得人们无需借助于量子干涉仪就可以进行此类实验。
摘要 — 通过与物理实体实时交互、同步和协作,数字孪生有望促进现代城市的智能化、预测性和优化化。通过将大量物理实体及其虚拟孪生与孪生间和孪生内通信互连,数字孪生互联网 (IoDT) 实现了跨大量物理/虚拟实体的自由数据交换、动态任务协作和高效信息聚合,从而获得综合洞察。然而,随着 IoDT 融入各种尖端技术催生新生态,严重的已知/未知安全漏洞和隐私侵犯阻碍了 IoDT 的广泛部署。此外,IoDT 的去中心化结构、以信息为中心的路由和语义通信等固有特性对 IoDT 中的安全服务配置提出了严峻挑战。为此,本文从系统架构、支持技术以及安全/隐私问题等方面对 IoDT 进行了深入的回顾。具体而言,我们首先探索一种具有信息物理交互的新型分布式 IoDT 架构,并讨论其主要特征和通信模式。随后,我们研究了 IoDT 中安全和隐私威胁的分类,讨论了关键的研究挑战,并回顾了最先进的防御方法。最后,我们指出了与 IoDT 相关的新趋势和开放的研究方向。
摘要:森林生态系统对人类社会和地球健康日益增长的重要性已被广泛认可,数据收集技术的进步为森林生态系统监测提供了新的综合方法。因此,本文的目标是提出一个框架来设计森林数字孪生(FDT),通过整合树木和森林层面的不同状态变量,创建森林的虚拟副本。这些数据集的整合可用于科学目的,用于报告森林的健康状况,并最终用于根据框架具体实施所支持的用例实施可持续森林管理实践。要实现这样的结果,需要将单棵树的孪生作为 FDT 的核心元素,通过真实虚拟的数字插座记录树木和附近环境的物理和生物状态变量。按照嵌套方法,孪生树和相关的物理和生理过程将成为整个森林更广泛的孪生的一部分,通过从遥感技术和通量塔等来源获取森林规模的数据来实现。最终,为了释放森林生态系统服务的经济价值,FDT 应实施基于区块链和智能合约的分布式账本,以确保数据和相关交易的最高透明度、可靠性和完整性,并加强森林风险管理,最终目标是改善流向可持续森林管理实践的资本流动。
“数字孪生是一组虚拟信息结构,它模仿单个/唯一物理资产的结构、环境和行为,在其整个生命周期内使用来自其物理孪生的数据动态更新,并为实现价值的决策提供信息”